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Abstract

Constructionist approaches to language posit
that all linguistic knowledge is captured in con-
structions. These constructions pair form and
meaning at varying levels of abstraction, rang-
ing from purely substantive to fully abstract
and are all acquired through situated commu-
nicative interactions. In this paper we provide
computational support for these foundational
principles. We present a model that enables an
artificial learner agent to acquire a construction
grammar directly from its sensory experience.
The grammar is built from the ground up, i.e.
without a given lexicon, predefined categories
or ontology and covers a range of constructions,
spanning from purely substantive to partially
schematic. Our approach integrates two previ-
ously separate but related experiments, allow-
ing the learner to incrementally build a linguis-
tic inventory that solves a question-answering
task in a synthetic environment. These findings
demonstrate that linguistic knowledge at differ-
ent levels can be mechanistically acquired from
experience.

1 Introduction

According to constructionist approaches to lan-
guage (Fillmore, 1988; Goldberg, 1995; Croft,
2001; Goldberg, 2003) all linguistic knowledge is
captured in constructions, pairing form and mean-
ing. Within this framework, constructions vary in
their level of abstraction, ranging from purely sub-
stantive to fully abstract, all shaped by usage. As
Goldberg (2003, p. 223) famously put it: “it’s
constructions all the way down”.
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Constructions are not abstract templates shared
uniformly between members of a linguistic com-
munity, rather each one is grounded in an indi-
vidual’s embodied experience and interaction with
the world (Lakoff, 1987; Langacker, 1987; Bybee,
2010; Tomasello, 2003; Diessel, 2017). For in-
stance, a construction mapping the form “dog” to
its underlying DOG concept is shaped by an indi-
vidual’s encounters with dogs, including what they
have seen, learned or heard about them. Beyond
the perceptual level, language users also acquire
constructions that coordinate more abstract cogni-
tive processes (Goldberg, 1995). Consider the sen-
tence “The dog chases the cat.” in which the tran-
sitive construction organises the relation between a
CHASING event and its participants. This abstract
relation is learned through repeated encounters of
linguistic utterances and observations in the world.
Whether the meaning of a construction is a concept
grounded in direct sensory experience or an ab-
stract schema, all are pairings of form and meaning
and arise from situated interactions (Beuls and Van
Eecke, 2025). This linguistic knowledge is built
up through cognitive mechanisms that reconstruct
the intended meaning of an interlocutor and find
patterns over form-meaning mappings (Tomasello,
2003; Dabrowska and Lieven, 2005; Behrens, 2009;
Lieven, 2014).

A computational approach to modelling lan-
guage acquisition involves language games, in
which embodied agents acquire constructions
through repeated situated communicative interac-
tions (Steels, 1995, 1999). These simulations offer
a mechanistic model of language acquisition, and
have been used to study the emergence of linguistic
structure at multiple levels, from basic grounded
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lexicons (Steels, 1995; Kaplan et al., 1998; Loet-
zsch, 2015; Nevens et al., 2020; Botoko Ekila et al.,
2024) to early forms of syntax (De Beule and
Bergen, 2006; Van Eecke, 2018) and more com-
plex grammatical systems (van Trijp, 2008; Beuls
and Hofer, 2011; Spranger and Steels, 2015; Steels
and Garcia Casademont, 2015; Nevens et al., 2022;
Doumen et al., 2024). However, a key challenge re-
mains unsolved: no existing computational model
has yet demonstrated the emergence of a construc-
tion grammar that is both directly learned from sen-
sory experience and capable of capturing a range of
constructions, spanning from fully substantive con-
structions to more abstract constructions, without a
given lexicon, ontology or predefined categories.

In this paper, we present a model that enables
a learner agent to acquire a construction grammar
from the ground up through situated communica-
tive interactions with a tutor agent. Using a curricu-
lum learning approach, where training progresses
from simpler to more complex interactions, the
learner develops a grammar that spans from percep-
tually grounded lexical constructions to partially
schematic constructions. We validate our approach
experimentally in a synthetic continuous environ-
ment in which a learner develops a grammar to
interpret and answer questions. We thereby demon-
strate that, with the help of a tutor, a computational
construction grammar including more abstract con-
structions can be acquired directly from sensory
experience, supporting the hypothesis that it is also,
indeed, constructions all the way up.

2 Background

The model we present is embedded within the
framework of language games (Steels, 1995, 1999),
which is used to simulate how agents can estab-
lish linguistic conventions through repeated sit-
uated communicative interactions. In this paper,
we build on language acquisition experiments that
each focus on different levels of abstraction: (i)
acquiring perceptually grounded lexical construc-
tions that link sensory experiences to linguistic
forms (Nevens et al., 2020; Botoko Ekila et al.,
2024) and (ii) acquiring grammatical constructions
that capture structural patterns in language use
(Nevens et al., 2022; Doumen et al., 2024). Al-
though these four experiments focus on acquiring
constructions at varying levels of abstraction, they
rely on the same shared principle: agents acquire
form-meaning mappings through situated commu-
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Figure 1: Example of a grounded lexical construction
learned by the learner agent for the word “red”, which
has specialised towards the three colour feature dimen-
sions (RGB). Only dimensions with weights greater
than 0.0 are shown.

nicative interactions (Beuls and Van Eecke, 2024).
The next sections summarise the core mechanisms
behind each experiment, which forms the basis of
our integrated approach.

2.1 Acquiring grounded lexical constructions

The experiments of Nevens et al. (2020) and
Botoko Ekila et al. (2024) are concerned with ac-
quiring form-meaning pairings that link sensory
experiences to linguistic forms. In this process, a
learner agent acquires a set of constructions that
capture perceptual concepts such as RED or LARGE
by interacting with a tutor agent. Importantly, the
learner starts without any prior linguistic knowl-
edge.

In the experiments, both agents are situated in
a shared environment with different objects and
engage in a series of referential games, each cor-
responding to a single interaction. In each inter-
action, the tutor (i) selects a target object from
the scene and (ii) produces a single-word utter-
ance that refers to a property of the selected object
that distinguishes it from the other objects. The
learner observes the scene through its own sensors,
which capture raw perceptual features (e.g. RGB
for colour or the number of pixels an object occu-
pies in the image for size). The goal of the learner
is to infer which object the tutor is referring to,
based on the utterance, the perceptual input, and
any linguistic knowledge acquired in previous inter-
actions. After each interaction, the tutor reveals the
correct referent (i.e. the target object), providing
explicit feedback. At no point are the tutor’s and
learner’s internal representations shared between
agents. The learner must refine its own internal



representations through these interactions with the
tutor. They store the observed word forms (e.g.
“red”) and associated internal concept representa-
tions as form-meaning mappings in its inventory.

Concepts are modelled as weighted Gaussian dis-
tributions over sensory features. Each distribution
captures the prototypical range of values associ-
ated with that feature, while the associated weight
captures the feature’s relevance to the concept. For
example, as seen in Figure 1, the concept linked
to the word “red” assigns high weights to RGB
features and low weights to other features. These
distributions and weights are updated incrementally
through repeated interactions with the tutor.

Early on, the learner’s answers are mostly incor-
rect, but as they interact more, the learner refines its
concept representations based on the feedback of
the tutor. Over time, the learner builds a conceptual
system grounded in its own sensory experience of
the world.

2.2 Acquiring grammatical constructions

In the experiments of Nevens et al. (2022) and
Doumen et al. (2024), a learner acquires lexical and
grammatical constructions by playing a question-
answering game. The game operates in a symbolic
representation of the environment of the experi-
ments discussed in Section 2.1. In this symbolic
version of the setting, objects are described using
structured attribute-value pairs (e.g. OBJECT-1:
{COLOUR: RED, SHAPE: CUBE}). This setup ab-
stracts away from raw sensory inputs and percep-
tual processing, allowing the learner to work di-
rectly with high-level representations of objects.
Thus, as seen in Figure 2, the meaning of the
CUBES-CXN is represented by the symbol CUBE.
Within this symbolic setting, the tutor poses
questions about a scene such as “How many red
cubes are there?” or “What shape does the blue
object have?”. The learner’s task is to interpret
the question and produce a correct answer. To
achieve this, the learner builds a construction gram-
mar that maps linguistic utterances to meaning rep-
resentations that can be executed to retrieve the
answer. To acquire these constructions, the learner
is equipped with two core learning mechanisms:
intention reading and pattern finding (Tomasello,
2003). Intention reading refers to a language user’s
ability to reconstruct the intended meaning of an ut-
terance, enabling the learner to hypothesise about
the speaker’s intended meaning. Pattern finding
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Figure 2: Example of two constructions acquired by the
learner agent during the question-answering game that
takes place in a symbolic environment. A lexical CUBES-
CXN with a symbolic concept representation, an item-
based HOW-MANY-?X-ARE-THERE-CXN and part of
the categorial network, capturing the slot-filler relation
through the categories in the constructions, are shown.
Figure based on Nevens et al. (2022) and Doumen et al.
(2024).

refers to the ability to generalise across different
communicative interactions. We briefly summarise
how these processes are operationalised, but for
a more comprehensive explanation we refer the
reader to Nevens et al. (2022) and Doumen et al.
(2024).

The learner starts the game with an empty lin-
guistic inventory but is endowed with a set of
atomic cognitive operations (so-called primitive op-
erations). The meaning of questions is represented
as sequences of these operations, each of which
are needed to find the correct answer, i.e. a form
of procedural semantics (Winograd, 1972; Woods,
1968). Formally, each question is encoded as a
set of predicates. Each predicate corresponds to a
primitive operation that the learner can perform,
such as filtering objects by their properties or count-
ing elements in a set. For example, the question
“How many cubes are there?” can be represented
as a sequence of three primitive operations: (i) ob-
serving the current scene with OBSERVE-SCENE,
(ii) filtering for objects of type cube with FILTER,
and (iii) counting the resulting set with COUNT.

At the start of each interaction, both agents are
situated in the same scene. The tutor then poses a
question to the learner about the scene. The learner



attempts to interpret and answer the question using
its current linguistic inventory. If the learner fails to
interpret the question or the answer is incorrect, the
tutor provides feedback in the form of the correct
answer. The learner then attempts to recover the in-
tended meaning by abductively reasoning about the
tutor’s communicative goal (i.e. intention reading).
In doing so, it searches for a program (a sequence
of primitive operations) that would lead to the tu-
tor’s answer. Once a plausible program is found,
the learner can store this new utterance-program
pairing as a candidate construction.

Over time, through an inductive process, the
learner generalises across observed utterances and
reconstructed meanings to build more abstract
schemata (i.e. pattern finding). For example, if
the learner has previously encountered and under-
stood the question “How many spheres are there?”
and then observes “How many cubes are there?”,
it can induce a pattern. As shown in Figure 2,
one possible generalisation could yield a construc-
tion that includes a slot, e.g. HOW-MANY-?X-ARE-
THERE?-CXN, and another that can fill that slot,
e.g. CUBES-CXN. A construction can thus be par-
tially schematic: containing both fixed elements
and variable slots. Slots are the parts that remain
open and available to be filled by other construc-
tions. Constructions may contain more than one
slot, and slots can also occur adjacently. In the re-
mainder of this text, we refer to partially schematic
constructions with one or more slots as item-based
constructions, while fully substantive constructions
are referred to as lexical constructions.

As the construction inventory grows, the learner
becomes able to interpret parts of novel utterances.
The learner can then use this partial analysis as
a starting point to more efficiently search for the
remaining operations needed to construct a full
program that leads to the answer. In total, seven
generalisation operators are introduced by Nevens
et al. (2022) and Doumen et al. (2024).

A critical component of the approach is the
categorial network which organises the learner’s
acquired knowledge of which constructions can
fill in slots of other constructions (Van Eecke,
2018). As seen in Figure 2, the how-many- ?x-are-
there(?x) category is linked to three filler categories
(spheres, cylinders, cubes) that can fill the ?x slot.
The categorial network thus stores slot-filler re-
lations observed during interactions and dynam-
ically expands as new combinations are encoun-

87

tered. This mechanism supports an important gen-
eralisation: even when the learner has never seen
a particular combination of constructions, it can
still interpret the utterance if the individual compo-
nents are known. For example, the learner might
already know a construction WHAT-IS-THE-?X-
MADE-OF?-CXN and another SPHERE-CXN, but
never observed the specific combination “What is
the sphere made of?”. In such cases, the catego-
rial network allows the learner to combine known
constructions by creating a new link between these
categories, without needing to create a new con-
struction.

Together, intention reading, pattern finding and
the categorial network form the core mechanisms
through which the learner agent acquires a flexible
and compositional grammar. Through this gram-
mar, the agent can solve the task of interpreting and
answering the questions.

3 Acquiring a Construction Grammar
from Sensory Experience

To demonstrate how a computational construction
grammar spanning multiple levels of abstraction
can be acquired directly from sensory experience,
we integrate the experiments discussed in Sections
2.1 and 2.2. In our integrated methodology, a
learner agent first acquires grounded lexical con-
structions through a reference-based game, before
using these constructions as building blocks in a
question-answering game.

To achieve this integration, the symbolic scene
representations used in the question-answering
game must be replaced by a continuous environ-
ment. As discussed in Section 2.2, the original
experiment assumes symbolic input in the form of
structured representations. This allows the learner
to reason directly over discrete, high-level struc-
tures using its primitive operators, bypassing the
challenge of perceptual grounding. In the continu-
ous setting, the primitive operators must be adapted
to reason over low-level structures which is not
straightforward. We highlight three key changes.

Similarity between concepts and objects A cru-
cial cognitive operation in the experiment is the
FILTER primitive, which takes a set of objects as in-
put and returns a filtered set containing only those
objects for which a given concept applies. In the
original symbolic setting, filtering objects by a con-
cept relied on symbolic matching. In our continu-
ous setup, we adapt the FILTER primitive to work



with raw perceptual features. Rather than check-
ing whether an object has a given symbolic feature,
the learner now computes a similarity score be-
tween the grounded concept and each object in
the input set. This similarity is calculated using
the algorithm introduced in Nevens et al. (2020). It
estimates the likelihood that an object’s sensory fea-
tures were generated by the concept’s distribution.
Any object whose similarity exceeds a threshold ~y
is included in the filtered set.

Deriving category hierarchies The original
question-answering experiments operate under a
critical assumption: agents must also already have a
prespecified category hierarchy (Rosch et al., 1976)
to perform certain basic cognitive operations, such
as querying on a category (e.g. COLOUR). The
learner is assumed to already understand, for exam-
ple, that SIZE constitutes a superordinate category
with mutually exclusive values like SMALL and
LARGE. This assumption provides a scaffold that
simplifies the problem, but it does raise questions
about how such hierarchies can be acquired.

It has been hypothesised that a categorial net-
work, capturing slot-filler relationships, contains
the information needed to derive these category
hierarchies (Van Eecke, 2018; Steels et al., 2022;
Nevens et al., 2022; Doumen et al., 2024). Simply
put, categories that behave similarly across con-
structions may belong to the same domain. To
operationalise this hypothesis, we identify poten-
tial semantic fields: groups of categories that likely
belong to the same domain. This is achieved by
clustering categories based on their constructional
behaviour captured by the categorial network. Con-
cretely, we compute the vertex cosine similarity
(Salton and McGill, 1983) between all pairs of
categories (i.e. fillers) in the categorial network.
This yields a fully connected graph where each
node corresponds to a category and each edge is
weighted by the similarity score. Categories that
frequently fill the same slots will have many shared
connections, and thus a higher vertex cosine simi-
larity. To identify meaningful clusters, we apply a
threshold 7 and retain only edges with high simi-
larity scores. This pruning step breaks the network
into connected components that represent potential
semantic fields, such as size, colour or shape.

Generalisation operators As discussed in Sec-
tion 2.2, the original question-answering experi-
ment uses seven generalisation operators. These
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Figure 3: Example of two constructions acquired by
the learner during the question-answering game in the
continuous setting. A lexical RED-CXN, an item-based
HOW-MANY-?X-OBJECTS-ARE-THERE-CXN and part
of the categorial network, capturing the slot-filler re-
lation through the categories in the constructions, are
shown.

included generalisations over holistic mappings
between linguistic forms and reconstructed mean-
ings. These types of generalisations could lead
to item-based and lexical constructions. In our
experiment, all required lexical constructions are
acquired before the question-answering game be-
gins. As a result, operators that generalise over
holistic mappings that yield lexical constructions
are no longer needed. Due to our two-phased ap-
proach, only three generalisation operators are used
(i.e. add-categorial-link, lexical—item-based and
nothing—holophrase).

4 Experimental Validation

We validate our methodology experimentally. The
experiment is structured in two phases. Initially,
the learner acquires concepts through a reference-
based game using the methodology discussed in
Section 2.1. After this phase, the learner has ac-
quired a set of grounded lexical constructions that
are mappings between linguistic forms and percep-
tually grounded concept representations. In the
second phase, the learner participates in a question-
answering game using the adaptations discussed
in Section 3. Concretely, the learner agent further
expands its construction inventory with item-based
constructions, in which the previously acquired



grounded lexical constructions serve as fillers. Fig-
ure 3 captures this idea: the construction inven-
tory of the agent consists of both grounded lexical
constructions as well as item-based constructions
linked through the categorial network. In contrast
to Figure 2, the meaning of the lexical construction
is now represented by a grounded concept. Im-
portantly, although the two phases are structured
sequentially, learning is not confined to each phase:
during the second phase, the concept representa-
tions in the grounded lexical constructions continue
to be refined through new observations.

Data The experiment uses the CLEVR dataset
(Johnson et al., 2017). This dataset contains ques-
tions about images containing three to ten geomet-
ric objects. Each object is described by a combi-
nation of attributes: one of three shapes (SPHERE,
CUBE or CYLINDER), one of eight colours (GREY,
BLUE, BROWN, YELLOW, RED, GREEN, PURPLE
or CYAN), one of two material types (METAL or
RUBBER) and one of two sizes (SMALL or LARGE).

Following Nevens (2022) and Doumen et al.
(2024), we use a subset of the CLEVR scenes and
questions. To create the continuous environment,
we extract features for each object in the scenes
from the dataset following the data processing steps
discussed in Nevens et al. (2020, p. 7). We use
14,000 of the 15,000 scenes across both Phase 1
and 2 and hold out the remaining 1,000 scenes
for evaluation. This allows us to assess how well
the methodology generalises to previously unseen
scenes after Phase 2. Only questions involving (i)
counting, (ii) checking for existence and (iii) query-
ing for a certain attribute are retained. To obtain
this subset, we removed questions related to com-
parison, spatial relations and logical operations. As
explained in Doumen et al. (2024), this choice is
motivated by the complexity of these operations
which is far removed from the complexity of the
questions that children encounter in the beginning
of the language acquisition process. Lastly, in the
CLEVR dataset, synonyms are used to describe the
exact same concepts (e.g. sphere and ball). We
remove these questions, following the principle of
no synonymy (Goldberg, 1995, p. 67). Thus, in
Phase 2 of the experiment 1,935 unique questions
can be posed about 14,000 different scenes.

Experimental setup The experimental setup of
Phase 1 follows Nevens et al. (2020). Phase 2,
due to its increased complexity, is further broken
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down into three successive steps to facilitate learn-
ing. First, the tutor poses counting and existence
check questions (respectively named Phase 2A and
Phase 2B). This allows the learner to observe many
slot-filler relationships and gradually build up its
categorial network. After this, the tutor moves onto
questions related to querying attributes of objects
(Phase 2C), which requires reasoning over category
hierarchies. These hierarchies are created based
on the categorial network that was built up during
the previous phases using the category clustering
method described in Section 3. The thresholds y
and 7 are hyperparameters and are set empirically
to respectively v = 0.8 and 7 = 0.7. In total the
experiment consists of 20,000 interactions. Phase
1 consists of 5,000 interactions, while Phase 2 con-
sists of 5,000 interactions for each of the three parts:
Phase 2A, 2B and 2C. All reported results are av-
eraged over 10 independent runs. All runs were
conducted on a 12-core CPU paired with 16GB of
RAM, with each run completed in +0.5 hours.

Learning dynamics The learning dynamics of
the experiment are shown in Figure 4. For each
phase, we keep track of the average communicative
success over time. For the reference-based game,
an interaction is successful if the learner points
to the tutor’s intended referent. For the question-
answering game, there is success when the learner
utters the expected answer. In both cases, a success
of 100% means that learner understands the tutor
perfectly.

As seen in Figure 4, at the end of Phase I, an
inventory of 15 grounded lexical constructions is
acquired.! In the beginning of Phase 2A, when the
learner encounters questions related to counting,
success drops down, but quickly rises again when
the learner successfully acquires item-based con-
structions that are needed to answer the questions.
By the end of this phase, on average, 20 item-based
constructions and 4 holophrase constructions are
acquired and the necessary links between the slots
of the item-based constructions and the slot-filler
relations are learned and added to the categorial net-
work. Similar dynamics are observed when the ex-
istence and query questions are introduced (Phases
2B and 2C). First, the success drops down, but the

'Note that the number of lexical constructions jumps from
15 to 18 between Phase 1 and Phase 2. This increase is due to
the creation of three plural equivalents for the singular ‘shape’-
constructions. In Phase 1, the tutor only refers to singular
concepts, but later in the experiment, the plural versions are
required.
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Figure 4: Learning dynamics of the experiment. The blue line denotes the degree of average communicative success
over the past 500 interactions. At the start of each phase the average window is reset. The other dashed lines
(yellow, red and blue) respectively denote the number of lexical, item-based and holophrase constructions that were
acquired over time. At the beginning of each phase, communicative success drops down, but quickly recovers as
constructions are acquired to resolve communicative impasses. Results are averaged over 10 independent runs.

agent quickly acquires the necessary constructions
and communicative success is reached again after
a couple of hundred interactions. The linguistic
inventory size expands to & 50 item-based and 9
holophrase constructions at the end of Phase 2B
and reaches a number of 157 item-based construc-
tions at the end of the experiment, leading to a total
of 4 184 constructions.” Finally, we evaluate the
acquired construction grammar on a held-out set
of 1,000 unseen scenes in ten independent runs.
During this phase, the learner’s linguistic system is
frozen and cannot be updated. We perform 5,000
additional interactions on this evaluation set. The
learner correctly interprets and answers the tutor’s
question posed in 99.65% of interactions, averaged
over 10 independent runs. Analysis of the rare fail-
ure cases reveals that errors are primarily due to

Note that there is no typical ‘overshoot’ pattern for the
number of constructions. In the reference-based game, this
is due to the lack of ambiguity regarding form about which
forms map to which meaning. The learner directly acquires
a construction with an initial concept representation that is
gradually refined. In the question-answering game, we ob-
serve that the agent likewise acquires the optimal meaning
representation from the start. This contrasts with the orig-
inal experiment, where many suboptimal lexical mappings

were first acquired. Our two-phased approach prevents lexical
suboptimal hypotheses.
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grounding issues, where slight out-of-distribution
observations relative to the learned concept repre-
sentations lead down the line to incorrect answers.

Formation of a category hierarchy The catego-
rial network captures the slot-filler relations of the
constructions. These relations are built up during
the experiment and form the basis for the formation
of category hierarchies, which are used in the last
phase of the experiment.

Figure 5 shows the expansion of the learner’s
categorial network during the different phases of
the experiment. For visual purposes, we zoom
in on categories related to nine grounded lexical
constructions and three item-based constructions.
After Phase 1, the network consists only of dis-
connected categories for grounded lexical construc-
tions. During Phase 2A categories start to cluster.
We observe that categories that relate to the shape
of objects act as fillers in similar slots (e.g. they fill
the ?y slot in the HOW-MANY-?X-?Y-ARE-THERE-
CXN) and are thus possibly more related to each
other than, for example, the ‘material’, ‘colour’ and
‘size’ categories which fill the ?x slot in the same
construction (see Figure 5). During Phase 2B, the
categorial network expands. Now, we clearly ob-
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Figure 5: Expansion of the learner’s categorial network over the course of the experiment. Phase 1 shows the
network after the grounded lexical construction learning phase, with no links between categories yet. In Phase 2A
initial clusters of categories begin to form. In Phase 2B, shaded in grey, four semantically relevant clusters emerge
(size, colour, material, shape). Only a subset of the categorial network is shown for illustrative purposes.

serve that categories cluster together into meaning-
ful hierarchies over concepts, indicated by the grey
shaded regions in Figure 5. This cluster formation
is used to build the hierarchy needed in Phase 2C
of the experiment in which the agent needs to query
attributes of certain objects. Applying the method-
ology described in Section 3 results in 5 clusters:
the shapes (singular and plural), the colours, the
materials and the sizes. Our results demonstrate
that a useful category hierarchy can emerge based
on the constructional behaviour captured by the
categorial network of an agent.

5 Related Work

Many computational models for grounded lan-
guage acquisition have been developed in dif-
ferent fields, including cognitive linguistics, Al
and robotics. This paper studies this grand chal-
lenge from a constructionist perspective. There-
fore, in what follows, we outline the different
strands of work that take this perspective. Fol-
lowing a recent survey by Doumen et al. (2025),
we thus focus on constructionist models that incre-
mentally acquire productive form-meaning map-
pings that extend beyond lexical items. Doumen
et al. (2025) distinguish approaches based on how
much semantic supervision is provided. In a first
set of models, training examples pair an utter-
ance with its gold semantic annotation (e.g. Al-

91

ishahi and Stevenson, 2008; Beuls et al., 2010;
Chang, 2008; Doumen et al., 2024; Gerasymova
and Spranger, 2010, 2012). Other models reduce
this supervision by presenting multiple candidate
gold semantic annotations, introducing referential
uncertainty (Abend et al., 2017; Beekhuizen and
Bod, 2014; Beekhuizen, 2015; Chen and Mooney,
2008; Dominey, 2005a,b; Dominey and Boucher,
2005; Garcia Casademont and Steels, 2015, 2016;
Gaspers et al., 2011; Gaspers and Cimiano, 2012,
2014; Gaspers et al., 2017; Kwiatkowski et al.,
2010, 2011, 2012; Steels, 2004). A third set of
models focus on learning in situated interactions
without gold semantic annotations altogether. In
these works, a combination of a predefined lexi-
con, categories or ontology is assumed (Artzi and
Zettlemoyer, 2013; Nevens et al., 2022; Spranger,
2015; Spranger and Steels, 2015; Spranger, 2017).
Finally, De Vos et al. (2024) present a grammar
coupled with concepts grounded in a way similar
to Section 2.1. Notably, their approach is applied to
the same visual question answering task considered
in this paper. However, whereas they manually de-
signed a grammar tailored to the task, our focus lies
on the acquisition of a grammar across different
levels of abstraction. This makes the problem sig-
nificantly more challenging and motivated our use
of a subset of the dataset (see Section 4). As such,
direct comparison is not straightforward. De Vos



et al. (2024) report an accuracy of 96% on the full
dataset, while we achieve near-perfect success on
the subset.

A growing related strand of research examines to
what extent large language models (LLMs) capture
constructional knowledge. These probing studies
indicate that state-of-the-art LLMs can capture sub-
stantive constructions reasonably well, but have
more difficulty with more schematic patterns (see
e.g. Weissweiler et al. (2022); Bonial and Tay-
yar Madabushi (2024); Zhou et al. (2024); Rozner
et al. (2025)). These findings provide valuable
insights into the strengths and limitations of cur-
rent models. Our objective, rather, is to present a
mechanistic model in which constructions at vary-
ing levels of schematicity emerge incrementally
through situated communicative interactions, rather
than via optimisation for next-token prediction over
large-scale corpora.

6 Discussion and Conclusion

This paper has presented a computational model
in which a construction grammar is acquired di-
rectly from sensory experience, capturing construc-
tions at varying levels of abstraction. We have
integrated two previously separate but related ex-
periments operationalised in the language game
paradigm, guided by the hypothesis that construc-
tions at different levels can be acquired through
the same underlying cognitive mechanisms. While
Beuls and Van Eecke (2024) formulated this idea at
a conceptual level, we offer a concrete operationali-
sation. In our approach, constructions are acquired
through repeated situated communicative interac-
tions between a tutor and a learner agent. Across
these interactions, the learner identifies regularities
(whether these are associations between sensory
feature values and linguistic forms or correspon-
dences between syntactic patterns and semantic
operations) and uses those regularities to incremen-
tally refine its linguistic system. To enable this
integration, we have introduced a component that
induces a category hierarchy from the slot-filler
relations of the acquired constructions, thereby re-
placing a major scaffold of the earlier model by
Nevens et al. (2022), which assumed access to a
predefined hierarchy. In this setting, the component
derives category hierarchies that are one layer deep,
although future work could investigate extensions
to multi-level hierarchies.
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The methodology has been validated through an
experiment in the synthetic CLEVR environment.
The experiment has demonstrated that lexical con-
structions that were grounded in the sensors of the
agent and were acquired in referential games can
serve as building blocks for abstract grammatical
constructions in a subsequent question-answering
game. In this paper, we focused on the acquisi-
tion of lexical and item-based constructions. These
results provide computational support for a core
assumption in construction grammar, showing how
both purely substantive and more abstract construc-
tions can emerge from repeated situated commu-
nicative interactions. However, further work is
needed to investigate the acquisition of construc-
tions at all levels of abstraction in more complex
environments.
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