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1. Introduction

Usage-based theories of language acquisition argue that the
ability of children to learn language is based on two general
cognitive capacities, which are often referred to by the terms
intention reading and pattern finding [1,2]. Intention reading refers
to the capacity of children to share attention, recognize ges-
tures and understand the communicative intentions of their

"Joint last authors.
© 2024 The Authors. Published by the Royal Society under the terms of the Creative

THE ROYAL SOCIETY Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

PUBLISHING unrestricted use, provided the original author and source are credited.


http://orcid.org/
http://orcid.org/0000-0003-4451-4778
http://orcid.org/0000-0001-9153-9092
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rsos.231998&domain=pdf&date_stamp=2024-07-24
https://doi.org/10.1098/rsos.231998

Downloaded from https://royal societypublishing.org/ on 22 August 2025

interlocutors. It embodies the functional, meaningful dimension of linguistic communication. The
second cognitive capacity, pattern finding, refers to the ability of children to recognize similarities and
differences in their sensory-motor experiences, and to use this ability for perceptual and conceptual
categorization, schema formation, frequency-based distributional reasoning and analogical thinking
[1, p. 3—4]. Pattern finding thus provides the mechanisms for generalizing across different communica-
tive interactions, thereby constructing abstract schemata that represent the linguistic knowledge of
a language user. In the context of language acquisition, intention reading and pattern finding can
be considered two key cognitive capacities that are highly complementary. Intention reading allows
a language learner to reconstruct the meaning of an utterance that they observe during a communi-
cative interaction. Pattern finding then provides the mechanisms to learn a grammar based on the
combination of these observed utterances and their reconstructed meanings. Such a grammar takes the
form of a collection of form-meaning pairings, called constructions, which can range from holophrastic
mappings between entire utterances and their meaning to abstract mappings between, for example,
argument roles and their morpho-syntactic realization patterns [3-5].

There exists an impressive body of theoretical and empirical evidence for both intention reading
[6-9] and pattern finding [10-13]. However, no mechanistic models that provide a faithful operationali-
zation of either of these cognitive processes exist to date. In this article, we aim to fill part of this void
by presenting a computational operationalization of pattern finding mechanisms that can bootstrap a
construction grammar based on a set of semantically annotated utterances alone. As such, we assume
that the outcome of the intention reading process is given, hence the availability of the utterances’
semantic representations, but that no pre-existing morpho-syntactic or other grammatical information
is available. The resulting grammars consist of form-meaning pairings that are either holophrastic,
item-based or lexical. The first constructions that are learned are holophrastic constructions that
map between an entire utterance and its meaning representation. Then, item-based constructions
and lexical constructions can be learned by generalizing over similarities and differences between
novel linguistic observations and previously acquired constructions. Alongside these constructions, a
network of emergent grammatical categories is built up, which captures the links between the lexical
constructions and the slots of the item-based constructions that they can fill [4,14]. We provide an
initial evaluation of our methodology using the CLEVR benchmark dataset [15], illustrating that it
allows for fast, incremental and effective learning of constructions and categories. The result of this
learning process is a fully operational, productive construction grammar that can be used for both
language comprehension and language production, respectively defined as mapping from an utterance
to a representation of its meaning and from a meaning representation to an utterance that expresses it
[16,17].

Throughout this article, we adopt the terminology and framework proposed by Tomasello [1]
for reasons of clarity and consistency. There exist many other approaches to constructivist language
acquisition in the fields of developmental psychology and usage-based linguistics, which concretize
similar ideas in one form or another [6,9,13,18-29]. A very different perspective is taken by approaches
that argue that linguistic structures are to a considerable extent innate [30,31], thereby leaving the
usage-based perspective adopted in this article.

The scientific contribution of the research presented in this article is threefold. First of all, it
provides computational evidence for the cognitive plausibility of usage-based theories of language
acquisition by introducing a mechanistic model of the acquisition of item-based construction gram-
mars and grammatical categories from utterance-meaning pairs. Second, it corroborates the theoretical
underpinnings of construction grammar theories, in particular concerning the dynamic and emergent
nature of grammatical categories [4,32] and the role these play in facilitating the free combination of
constructions [13,33]. Finally, the techniques that we present pave the way for learning computationally
tractable, large-scale, usage-based construction grammars that facilitate both language comprehension
and production. Apart from their theoretical importance, such grammars are also highly valuable for a
large range of application domains, including intelligent conversational agents (e.g. [34,35]), grounded
language understanding (e.g. [36,37]), intelligent tutoring (e.g. [38,39]) and the semantic analysis of
discourse (e.g. [40,41]).
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2. Background and related work

2.1. Theoretical and empirical foundations

Constructivist theories of language acquisition argue that linguistic structures and categories are not
innate, but gradually acquired by children based on the communicative interactions that they take part
in [1,14,42-45]. As this process unfolds, the dynamic system of form-meaning pairings and grammati-
cal categories that they have acquired becomes progressively more abstract, organized and efficacious
in serving their communicative needs. At an early age, children start to acquire holistic mappings
between the linguistic forms that they observe and the meanings that they infer through intention
reading. These mappings, which are called holophrastic constructions, are holistic in the sense that
children do not further decompose them into smaller units. Holophrastic constructions can correspond
to single words in adult speech, such as ‘bike’ or ‘juice’, as well as to expressions that are compositional
in adult speech but not in early child speech, such as ‘lemme-see’ or ‘I-wanna-do-it" (examples from
[46]).

Somewhat later in their linguistic development, children start to generalize over these holophrastic
constructions and acquire item-based constructions. This involves a segmentation process in which both
the form and the meaning side of a holophrastic construction are (partially) decomposed. In other
terms, the child discovers that parts of the form of a holophrastic construction correspond to specific
parts of its meaning. For example, the holophrastic constructions ‘eat-apple’ and ‘eat-cookie’ can be
generalized into a productive item-based construction ‘eat-X’. This construction captures the relation-
ship between the word form ‘eat’, a possible eating event, and the fact that the referent of X is the
patient of this event. This schematization process not only facilitates the generalization of holophrastic
constructions to item-based constructions, but also the further generalization of item-based construc-
tions into more abstract constructions that capture for example argument structure relations.

The schematization of more concrete constructions into more abstract constructions, for example,
from holophrastic constructions to item-based constructions, involves the creation of slots that can be
filled by different possible elements. For example, in the case of the ‘eat-X’ construction, X can be filled
by a variety of lexical items, such as ‘banana’, ‘pear’ or even ‘teddy-bear’. However, other lexical items
that a child might know, like “gone’, ‘green” or ‘lemme’, are much less likely to fill this slot. Like the
constructions themselves, the grammatical knowledge of the association strength between lexical items
and grammatical slots is dynamically built up through language use. This grammatical knowledge can
be represented in the form of a network that captures the distribution of slots and their fillers. Such a
network is in essence a representation of the grammatical categories that underlie the language of an
individual. In line with among others [14] and [4], we do not conceive categories as predefined sets to
which individual words need to be assigned, but as abstractions over usage patterns that have been
observed.

2.2. Mechanistic models of usage-based language acquisition

While there exists an overwhelming body of theoretical and empirical studies on child language
acquisition, mechanistic models that provide a precise operationalization of the processes through
which constructions and categories are acquired are still in their late infancy. Such models are,
however, of crucial importance to achieve a full understanding of how children acquire language. They
would also provide key evidence against the hypothesis that language cannot be acquired without
relying on innate linguistic structures or categories (cf. [47,48]). Moreover, such models would have
an important impact beyond the domain of child language acquisition, e.g. concerning the representa-
tion of constructions and categories in the field of construction grammar, and the development of
intelligent agents in the field of artificial intelligence (e.g. [49]).

Prior mechanistic models that operationalize the learning of constructions can be divided into three
groups, based on their definition of the learning task and on the input that they provide to the learning
process. A first class of models learns constructions from utterances with their meaning representa-
tion. Chang [50] introduces a set of mechanisms for acquiring new constructions based on either
input data or previously acquired constructions. Constructions are learned from input data through
mapping operations that associate an observed form with its meaning (observation — ‘throw-ball’).
Other constructions are not learned from input data but by reasoning over existing constructions.
Reorganization operations can recombine structural elements of existing constructions, by merging
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(“throw-block” + ‘throw-ball” — ‘throw-toy’), joining (‘human-throw’ + ‘throw-bottle’ — ‘human-throw- -

bottle’) or splitting (‘throw-frisbee” + ‘throw” — ‘“frisbee’). The learner has an initial grammar consisting
of lexical constructions that are associated with pre-established grammatical categories that represent
concrete objects, actions and relations. Tellier and Abend et al. [51,52] present a Bayesian approach
to learning categorial grammars from utterances that were annotated with a semantic representation
expressed in first-order logic. Gerasymova & Spranger [53,54] investigate the acquisition of holophras-
tic constructions, item-based constructions and abstract constructions for Russian aspectual marking
in a tutor-learner language game setting [55,56]. Holophrastic constructions are learned by a straight-
forward mapping operation between an observed form and its meaning. Item-based constructions
and abstract constructions are learned as generalizations over pre-categorized lexical items. Beuls
et al. [57] apply the same methodology to the conjugation of verbs in Hungarian, with a special
focus on its intricate agreement marking system. Spranger and Steels [58,59] also apply the same
methodology to spatial expressions. Spranger [60] presents an extension to this methodology that
learns constructions through more fine-grained semantic-based generalizations. The semantic classes
are predefined in an ontology that the learners can access. Dominey and Boucher [61-64] present a
neural model for the acquisition of holophrastic constructions, item-based constructions and abstract
constructions that capture argument structure relations (e.g. transitives and ditransitives). Learners
start with the capability to distinguish between closed-class and open-class words and learn to map
between slots in the argument structure constructions and the semantic roles they take. Finally, Van
Eecke and Beuls [33,65,66] introduce a set of general operators for learning novel constructions based
on the generalization and specialization of existing constructions with respect to novel observations.
They apply these operators to an experiment on the emergence of word order in primitive noun
phrases and show how a range of concrete to abstract constructions along with a network of emergent
grammatical categories can evolve in a population of agents. Nevens et al. and Doumen et al. [67,68]
present evolutions of this experiment that extend its scope to utterances of higher morpho-syntactic
and semantic complexity.

A second class of mechanistic models, as introduced by Gaspers et al. [69], takes utterances
accompanied by a description of the situational context as input. The situational context is represented
as a sequence of terms (predicates with their arguments) where one of the terms corresponds to the
meaning representation of the utterance. The task for the learner is to learn item-based mappings
from patterns occurring in the utterances to predicates with their respective arguments. Gaspers et
al. [69] introduce a methodology for learning these mappings through probabilistic cross-situational
learning and apply this methodology to the Robocup Soccer corpus [70]. A vocabulary is computed
first, after which item-based mappings are induced. Except for a segmentation into words, no prior
morpho-syntactic or semantic information is provided. Along with the constructions, a network of
associations between lexical items and construction slots is built up, corresponding to a system of
grammatical categories. Gaspers et al. [71-73] present evolutions of this model, where the level of
segmentation of the input is reduced from words through graphemes to phonemes. Compared with
the first class of models, the difficulty here lies in learning constructions under referential uncertainty,
as the exact meaning of the utterances is not provided. On the other hand, the utterances are rather
short and always correspond to a single term in the situational context.

A third set of models approach the acquisition of constructions as a traditional unsupervised
grammar induction problem. In these models, the goal is not to learn a grammar that can be used for
language comprehension or production but to capture the constructions of a language in the form of a
grammar with minimal size and maximum coverage. The input to these systems can be parse trees as
in the case of [74] or textual material possibly augmented with part-of-speech tags, semantic tags and
dependency relations as in the case of [75-77].

The task definition of the first class of models, namely learning constructions based on utter-
ances along with a representation of their meaning, matches our purposes most closely. Whereas
the task definition of the second class of models—namely learning constructions under referential
uncertainty —is an interesting and important problem, it is beyond the scope of this article. Instead,
we will focus exclusively on pattern finding in the sense of [1], and assume that the output of the
intention reading process, which deals with the issue of reconstructing the meaning of an utterance, is
given.! As a consequence, this allows us to model the acquisition of constructions based on utterances
that are morpho-syntactically and semantically of a much higher complexity. The task definition of the

'We refer the interested reader to Refs [67] and [78] for examples of proof-of-concept operationalizations of intention reading.
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third class of models, namely the induction of the syntactic constructions of a language, is less relevant
to our goals, as the resulting grammars provide no model of how the induced constructions would
interact to perform language comprehension or production tasks.

In general, the existing mechanistic models that learn operational computational construc-
tion grammars (i.e. class one and two) have explored interesting ideas on a rather small
scale, either because they were limited to specific linguistic phenomena [33,53,54,57-60,65,66],
or because of the limited morpho-syntactic and semantic complexity of the input utterances
[50,52,61,62,64,69,71-73]. In all of the aforementioned work except [67,68], either a segmentation
of the input utterances, a lexicon or a set of predefined grammatical categories was provided.
With the exception of [67-69,71-73], the corpora that were used to learn and evaluate the
models were not made available and were not described in sufficient detail to make reproduc-
tion and comparison feasible.

The methodology that we will present in the next sections pushes the state of the art by introducing
a model of how constructions and grammatical categories can be learned from utterance-meaning
pairs using general learning operators. We will use a large, semantically annotated corpus that is freely
available, with sentences that considerably exceed the morpho-syntactic and semantic complexity of
those used in previous work on learning construction grammars from utterance-meaning pairs.

3. Data

There are two main requirements for datasets to be compatible with the methodology that we present
in this article. First of all, they need to consist of utterances that are annotated with a representation of
their meaning. Second, they need to be large enough so that they contain enough utterances that are
similar to each other, but not equal, in terms of either form or meaning. The availability of exemplars
that are sufficiently close to each other is a necessary precondition for any generalization process and
is fully consistent with the prevailing hypotheses of how children acquire language (e.g. [1]). The
exact required size of a dataset is as a consequence directly related to the variety and the degree of
complexity of the utterances and meaning representations that it contains.

In this article, we present and evaluate our methodology using the CLEVR dataset [15]. The
utterances in the dataset are semantically annotated and the dataset contains ample examples of
utterance-meaning pairs that are similar but not equal to each other. The utterances are English
questions about images of scenes depicting different configurations of geometrical figures. Each
question is annotated with a semantic representation that captures the logical meaning that underlies
it. An example of such a scene with a series of accompanying questions is shown in figure 1. The
semantic representation of the first utterance, namely How many rubber spheres are there?, is shown in
figure 2.

The semantic representation in figure 2 takes the form of a set of predicates that share arguments
with each other. In the figure, the predicates are drawn in the form of a network, based on the variables
that they share. The meaning representation of a question can naturally be represented as a query,
i.e. a series of steps that need to be taken in order to answer the question. Each predicate represents
a step in this reasoning process, and intuitively corresponds to an atomic cognitive operation that
a human or machine can perform. In the case of the example utterance How many rubber spheres are
there?, the reasoning process consists of four main steps. The first predicate, GET-coNTEXT, binds the
image to the variable ‘?source’. Then, the FiLTER predicate filters the image for instantiations of the
concept of sPHERE. The result of this filtering operation, i.e. the set of all spheres that are in the image,
is bound to the variable ‘?spheres’. This set of spheres is subsequently filtered by another FILTER
predicate for instantiations of the concept of RuBBER. The resulting set of rubber spheres is bound to the
variable ‘?rubber-spheres’. Finally, the set of rubber spheres is counted by the counTt predicate and the
result is bound to the variable ‘?nr-of-rubber-spheres’. The meaning of the question How many rubber
spheres are there? corresponds thus informally to filtering an image for spheres, filtering the spheres for
rubber objects and counting the result of this last operation. Such meaning representations are called
procedural semantic representations as the representations themselves are at the same time executable
procedures [79-81]. Our methodology handles procedural semantic representations without problems,
but is in no way restricted to it. It can handle any semantic representation, as long as it embraces some
notion of compositionality and can be expressed as a set of predicates. Examples of other compatible
semantic representations include abstract meaning representation [82], PropBank frames [83] and the
lambda calculus [84,85].
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How many rubber spheres are there?
What is the color of the large metal cube?
There is a green cylinder; what is its size?

Is there a large red metal cube?

Figure 1. An example scene from the CLEVR dataset with four accompanying questions.

(get-context  ?source)
(filter Ispheres ?source ?sphere)
(filter ~ ?rubber-spheres ?spheres ?rubber) (bind shape-category ?sphere sphere)

(count  nr-of-rubber-spheres 7rubber—spheres)4) (bind material-category ?rubber rubber)

Figure 2. Procedural semantic annotation of the question How many rubber spheres are there? Variables are preceded by a question
mark.

The CLEVR dataset consists of three splits: a training split of 70 000 images and 699 989 questions,
a validation split of 15000 images and 149 991 questions and a test split of 15000 images and 149
988 questions. The questions in the training and validation splits come with semantic annotations,
whereas the test set does not. As we require these annotations in order to evaluate our model, we
use the training split of the CLEVR dataset as training set and the validation split as the test set.
The question—annotation pairs embrace various aspects of reasoning, including attribute identification
(There is a large cube; what is its colour?), counting (How many green spheres are there?), comparison (Are
there an equal number of large cubes and small things?), spatial relationships (What size is the cylinder
that is right of the yellow shiny thing that is left of the cube?) and logical operations (How many objects
are either red cubes or yellow cylinders?). For the purposes of this paper, we have selected the subset
of CLEVR questions that do not involve comparison, spatial relationships or logical operations. The
main reason for this is that these are complex cognitive operations that often correspond to long
and complex utterances that are far removed from the linguistic expressions that children (or even
other humans) are faced with. Our final training and test sets consist of 47 134 questions and 10 044
questions, respectively. For illustrative purposes, a sample of the questions is included in appendix A.

4. Methodology

We will first present the intuition behind our novel methodology for learning constructions from
observations (§4.1) and then discuss a computational operationalization of this methodology (§4.2).

4.1. Learning constructions through generalization

The input to the learning process are utterances that are annotated with a representation of their
meaning. The output of the learning process should consist of form-meaning mappings (constructions)
that can be used for comprehending and producing utterances. Some degree of generality is necessary,
as the learned constructions should not only be able to process previously encountered utterances, but
also be able to handle novel ones.

Let us for a moment take the perspective of the learning algorithm. At the beginning of the learning
process, the construction inventory is empty and the first utterance-meaning pair from the corpus
comes in. At this point, the only thing that the learning algorithm can do is to store an exact mapping
between the observed form and its meaning. Such a holistic mapping corresponds to a holophrastic
construction and is usable as such, albeit only for comprehending and producing the exact same
utterance as the one that was observed. In order to use such a construction in the comprehension
direction, it suffices to match the form side of the construction with an utterance and return the
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meaning side of the construction if the matching process succeeded. In order to use the same construc- -

tion in the production direction, the meaning side of the construction must be matched with a semantic
network and the form side must be returned.

When a next observation comes in, the learning algorithm first checks whether it is already covered
by constructions that have been acquired previously. When this is the case, the constructions that
are involved in the successful comprehension and production of the observation are reinforced by
incrementing their entrenchment score. If the observation is not covered, the algorithm checks whether
there are any generalizations that can be made based on the combination of the novel observation
and any previously acquired constructions. It is these generalization mechanisms that embody the
pattern finding capacity and are thereby at the core of the construction learning process. We have
identified three classes of mechanisms that facilitate the learning of general constructions by algorith-
mic reasoning over similarities and differences between existing constructions and novel observations.

4.1.1. Generalizing over holophrastic constructions

The first class of mechanisms facilitates the generalization of holophrastic constructions with respect to
novel observations. These mechanisms can learn item-based constructions that capture the similarities
between a novel observation and an existing holophrastic construction that was learned based on a
similar, but not equal, observation. These item-based constructions abstract away from the differences
between the observation and the holophrastic construction.

For example, imagine that a holophrastic construction has already been learned based on the
observation of the utterance How many rubber spheres are there? and the semantic network shown in
figure 2. Now, a novel utterance How many rubber cubes are there? is observed, along with a very similar
meaning network in which the predicate ‘(bind shape-category ?cube cube)’ appears at the place of
‘(bind shape-category ?sphere sphere)’. The generalization mechanisms compute the similarities and
differences between the construction and the observation in terms of both form and meaning, and
make a new item-based construction that maps between the utterance How many rubber ?X are there?
and the semantic network from figure 2 in which the non-overlapping predicate has been omitted. At
the same time, two new lexical constructions are created, which capture the differences between the
observation and the original holophrastic construction. In our example, these will be a construction
that maps between the utterance cubes and the meaning representation ‘(bind shape-category ?cube
cube)” and a construction that maps between the utterance spheres and the meaning representation
‘(bind shape-category ?sphere sphere)’. Finally, categorial links are made between the ?X slot in the
item-based construction and the new lexical constructions. The learning algorithm reveals here that
cubes and spheres can appear in the same slot of the item-based construction and that they are therefore
close to each other in terms of grammatical categories. Note that the ontological classes that appear in
the meaning predicates (e.g. shape-category and colour-category) are not used at all by the learning
algorithm, and that the grammatical categories emerge solely from associations between slots and
their observed fillers. The ontological categories are kept because they are part of the procedural
semantic annotation, but could be omitted without any consequences. The term ‘lexical construction’
is used to refer to a construction that has been learned as a slot-filler in an item-based construction,
as is common in the language acquisition literature. This is for clarity reasons only. Following the
construction grammar tradition, the learning algorithm does not have any notion of ‘word” or ‘lexeme’
and does not formally distinguish between different types of constructions.

There are three different scenarios in which mechanisms of this class are active. The first scenario
concerns utterances that extend holophrases that are already known. An example would be the
generalization of Are there any cylinders? to Are there any red cylinders? In this case, an item-based
construction Are there any ?X cylinders? is learned, along with a lexical construction for red and a
categorial link between the lexical construction and the open slot in the item-based construction.
The second scenario concerns utterances that reduce known holophrases. An example would be the
reduction of What is the size of the metal block? to What is the size of the block?. In this case, an item-based
construction for What is the size of the ?X block? is learned, along with a holophrastic construction for
What is the size of the block?, a lexical construction for metal, and a categorial link between the slot in
the item-based construction and the lexical construction. The final scenario concerns utterances that
are not a mere extension or reduction of each other, but contain different formal and/or semantic
material. An example would be the utterances How many rubber spheres are there? and How many rubber
cubes are there? discussed above, where a holophrastic construction for How many rubber spheres are
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there? is already in place. An item-based construction for How many rubber ?X are there is learnt along
with a lexical construction for cubes and a categorial link between the open slot in the item-based
construction and the new lexical construction. Additionally, a second lexical construction for spheres
is learned, along with a categorial link between the open slot in the item-based construction and the
lexical construction for spheres.

4.1.2. Learning constructions based on a partial analysis

The second class of mechanisms is designed to handle cases where an observation could not com-
pletely be processed using the existing constructions of grammar, but where a partial analysis could be
provided. These mechanisms can then create novel constructions that can work together with existing
constructions so that the entire observation can be processed successfully. They start thus from the
combination of a novel observation on the one hand, and an item-based construction or one or more
lexical constructions on the other. The second class of mechanisms is active in two different scenarios.

The first scenario concerns observations to which an item-based construction can apply, but where
there remains material that is not covered by any of the existing constructions. An example would be
an observation of What is the size of the green block?, where a construction for What is the size of the ?X
block? is already known, while no construction for green has been learned yet. The learning algorithm
detects that some aspects of the form and the meaning of the observation are not covered by the
existing item-based construction and it creates a novel lexical construction that maps between those
parts of the form and meaning that were not covered. Additionally, a categorial link is made between
the slot in the item-based construction and the lexical construction. In our example, this means that
a lexical construction for green is learned, along with a categorial link between this construction and
the ?X slot in the construction for What is the size of the ?X block?

The second scenario concerns observations to which one or more lexical constructions can apply,
but where these constructions do not fully cover the input. An example would be an observation of
the utterance There is a big red cube; what is its material?, where lexical constructions for big, red, cube
and material have already been learned. The learning algorithm will then create a new item-based
construction that incorporates all the form and meaning material that remains after the application of
these lexical constructions, and that abstracts away from these constructions through the integration
of four slots. The result is an item-based construction of the form There is a ?A ?B ?C; what is its ?D?
and four categorial links from the existing lexical constructions to the slots in the new item-based
construction.

4.1.3. Extending the categorial network

The third class of mechanisms is designed to handle cases where all necessary constructions are
already in place, but where they cannot combine owing to the absence of certain links in the catego-
rial network. An example would be the utterance How many things are there? where an item-based
construction covering How many ?X are there? and a lexical construction covering things already exist,
but where there is no link in the categorial network between the lexical construction for things and the
?X’ slot in the item-based construction. In such cases, the learning algorithm adds the missing link to
the categorial network.

4.2. Computational operationalization

While §4.1 has provided a high-level introduction to the intuition behind the methodology that
we have developed, the present section presents a full computational operationalization. It starts
by introducing representations and processing mechanisms for constructions (§4.2.1), as well as a
meta-level architecture for problem-solving and learning (§4.2.2). It then provides a more detailed
description of an operationalization of the construction learning mechanisms that were introduced
above, and highlights their integration into the learning architecture (§§4.2.3 to 4.2.8).

4.2.1. Representing linguistic knowledge as constructions

Constructionist approaches to language, as pioneered by among others [3,4,10,86], argue that the
linguistic knowledge of a language user can be captured in the form of a collection of learned
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form-meaning mappings, called constructions. Constructions can map between form and meaning E

patterns of any extent and degree of abstraction, ranging from individual morphemes (e.g. DoG-cxn)
and idiomatic expressions (e.g. BREAK-A-LEG-CXN), over partially instantiated structures (e.g. X-TAKE-Y-
FOR-GRANTED-CXN) to fully abstract schemata (e.g. the resultative or ditransitive construction). During
language processing, the constructions of grammar freely combine in order to comprehend or produce
linguistic expressions [13].

The field of computational construction grammar computationally operationalizes the basic tenets
of construction grammar so that constructions can be represented formally and processed algorithmi-
cally [33]. For the purposes of this study, we represent and process the constructions that are learned
using the Fluid Construction Grammar framework (FCG—[16,17,87,88]). FCG is in essence a special-
purpose programming language that provides adequate abstractions and useful building blocks for
implementing computational models of constructional language processing.

Constructions are represented as pairings between form and meaning. Both the form and the
meaning can be of arbitrary complexity and degree of abstraction. The most straightforward case
concerns a holophrastic construction, which captures a direct mapping between a complete utterance
and a representation of its meaning. An example of such a construction is shown in the middle of
figure 3. This construction captures the pairing between the utterance What is the tiny block made of? (left
of the double arrow) and a procedural semantic representation that filters a scene for cubes, filters the
result for small things, checks whether there is only one resulting object, and queries its material (right
of the double arrow). During language processing in the comprehension direction, flowing from top
to bottom in the figure, the construction matches its form pole with the observed utterance (shown at
the top) and returns its meaning pole if matching succeeded (shown at the bottom). In the production
direction, flowing from bottom to top in the figure, the construction matches its meaning pole with
the input meaning representation (shown at the bottom) and returns its form pole (shown at the
top). As visualized through the empty ‘slots’ and ‘arguments’ lists in the construction, holophrastic
constructions do not contain any slots that can be filled by other constructions and do not provide any
arguments that could fill open slots in other constructions.

A case in which an item-based construction and a lexical construction collaboratively process the
same utterance as above is exemplified in figure 4. The item-based construction WHAT-IS-THE-?X-BLOCK-
MADE-OF?>-CXN maps between the pattern What is the ?X block made of? and a procedural semantic
representation that filters the scene for cubes, filters the result for a variable property, checks whether
there is only one resulting object and queries the material of this object. The construction thus contains
an open slot on both its form pole and its meaning pole. The open slot on its form pole concerns a
variable element to be positioned between What is the and block made of? and is highlighted in yellow in
the figure. The open slot on its meaning pole concerns the unbound variable “?category-2’, representing
the concept to be used by the second filter operation, and is highlighted in green. The coupling
between both open slots is specified in the slot specification of the construction. This coupling states
that the slots can be filled by some other construction that provides a mapping between something
of category ‘what-is-the-?x-block-made-of?(?X)’, representing the ‘?X’ slot in the WHAT-1s-THE-?X-BLOCK-
MADE-OF?-CxXN, and something that matches the variable ‘?category-2". The lexical construction TINY-cxN
maps between the string tiny and the meaning representation ‘(bind size-category?category small)’.
This construction contains no open slots itself, but provides arguments that can fill open slots in
other constructions. In this case, it can fill the open slots in the WHAT-I1S-THE-?X-BLOCK-MADE-OF?-CXN
as the category ‘tiny’ is connected to the category ‘what-is-the-?x-block-made-of?(?X)" through the
categorial network. At the same time, the “?category’ variable from the TINY-cxN can unify with the
“?category-2’ variable from the WHAT-1S-THE-?X-BLOCK-MADE-OF>-CXN. The result is the utterance What is
the tiny block made of? in the production direction, and a complete semantic network for this utterance
in the comprehension direction.

If multiple combinations of constructions can apply to the same input utterance or meaning
representation, the combination with the highest average entrenchment score will be preferred. We
refer the interested reader to [89] for a detailed discussion of how constructional language processing
is concretely operationalized in FCG.

4.2.2. Routine processing versus meta-level processing

Following insights from the fields of artificial intelligence [90,91], cognitive science [92] and neurolin-
guistics [93,94], we distinguish between two levels of processing: routine processing and meta-level
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‘What is the tiny block made of?’

!

what-is-the-tiny-block-made-of?-cxn

get-context  %source)

. . (filter  Zobject-set-1  Zsource  “category-1)
3 Y
What is the tiny Py ‘\

s
block made Of? (filter  7object-set-2  object-set-1  category-2) (bind shape-category ’category-1 ~ cube)
(unique  Zobject "objccl-sc!-ls (bind  size-category Zcategory-2 small)
(query Tanswer  7object  category-3)
(bind attribute-category  “category-3  material)

Slots: []
Arguments: [ ]

I (get-cvvontext

(filier  object-set-1  %source  Ycategory-1)

COMPREHENSION
NOLLDNAO¥d

(filter  object-set2  Zobject-set-1  Ycategory-2) (bind shape-category Zcategory-1  cube)

(unique  7object  object-set-2 (bind  size-category lcategory-2  small).

(query %answer  Tobject  Zcategory-3)

(bind  atribute-category  category-3  material)

Figure 3. Schematic representation of the application of the holophrastic construction WHAT-IS-THE-TINY-BLOCK-MADE-OF?-CxN in the
comprehension and production directions. The form pole of the construction is shown on the left side of the double arrow, while its
meaning pole is shown on its right side. In the comprehension direction, shown from top to bottom, the form pole of the construction
is matched with the input utterance, and its meaning pole is returned. In the production direction, shown from bottom to top, the
meaning pole of the construction is matched with the input meaning representation and its form pole is returned.

processing. Routine processing deals with comprehending and producing utterances that are covered
by the existing constructions of grammar. During routine processing, a meta-level architecture is
constantly monitoring the application of constructions and diagnoses any problems that might occur.
If a problem occurs, it triggers a jump to the meta-level, where repair strategies search for a fix
that remedies the problem. When a fix is found, routine processing resumes. If it is the case that
the fix ultimately leads to a valid solution, it is consolidated so that it can later be reused during
routine processing. In our learning methodology, diagnostics trigger a jump to the meta-level if the
grammar cannot provide a correct mapping for a given utterance-meaning pair. Repairs have the
task of coming up with fixes that take the form of novel constructions, or nodes and links in the
categorial network. These fixes can be consolidated by adding them to the construction inventory or
the categorial network of the learner. The use of a meta-level architecture has the advantage that there
exists an effective separation between routine processing on the one hand, and problem solving and
learning on the other. The idea is that routine processing can be implemented efficiently and that less
efficient problem-solving strategies will only become active if an actual problem has been diagnosed. It
also allows abandoning the strict distinction between the training phase and the operational phase. As
long as some form of feedback is provided, the system can keep learning and adapting also after it has
been deployed, which is a highly desirable property of intelligent systems. Meta-level architectures for
computational construction grammar have been pioneered by [65,95,96].

4.2.3. Repairs for acquiring holophrastic constructions

When the existing constructions of a grammar are not sufficient to collaboratively map from an input
utterance to its meaning representation as annotated as a gold standard in the dataset, the most
basic repair strategy consists of creating a new holophrastic construction that captures a mapping
between the exact form and its annotated meaning. Holophrastic constructions contain no abstract
slots and provide no arguments that can fill slots in other constructions. They can be used in both the
comprehension and production direction, but can only apply in cases where the exact same utterance
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“What is the tiny block made of?”
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___________________________ e
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(unique  7object ‘YUbeCl—wl—Z)B (bind size-category 7category-2  small)

(query Zamswer  Zobject  Zcategory-3)
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Figure 4. Schematic representation of how the item-based construction wHaT-Is-THe-?x-BLock-MADE-OF?-CxN and the lexical construction
TINY-cx collaboratively process the utterance What is the tiny block made of? in the comprehension and production directions. The
TINY-cxN thereby fills the ‘7X slot in the WHAT-IS-THE-?X-BLOCK-MADE-OF7-CXN.

needs to be comprehended or the exact same meaning representation expressed. An example of a
holophrastic construction is shown in the middle of figure 3 above. In this example, the WHAT-1s-THE-
TINY-BLOCK-MADE-OF?-CXN has been learned based on the observation of the utterance What is the tiny
block made of? and a procedural semantic representation that filters the scene for cubes, filters the result
for small things, checks whether there is only one resulting object, and queries the material of this
object.

We will refer to this repair strategy by the name nothing — holophrase. While this repair does not
make any powerful generalizations, it has the advantage that it always succeeds, which is particularly
useful in the earliest phases of the learning process. The resulting holophrastic constructions serve as a
basis for the generalization processes implemented by other repair strategies.

4.2.4. Repairs for generalizing over holophrastic constructions

This class of repair strategies facilitates the generalization of holophrastic constructions to item-based
and lexical constructions. It handles cases that are not covered by the existing constructions of a
grammar, but where a holophrastic construction already exists that covers an utterance-meaning pair
that is similar, but not equal to an observation. Our implementation includes three repairs of this class.
The first repair handles cases where an observation is an extension of the form-meaning mapping
captured by a holophrastic construction. The extension can be on the form side, on the meaning side
or on both sides. An instantiation of this repair is shown in figure 5. The observation, shown in the
upper left corner, concerns the utterance What is tiny block made of? (left of the double arrow) along
with a procedural semantic network, represented here in an abstract fashion for space reasons (right of
the double arrow). This observation extends the existing holophrastic construction WHAT-1s-THE-BLOCK-
MADE-OF?-CXN, shown in the upper right corner, on both the form and the meaning side. Based on the
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Figure 5. Based on a new utterance—meaning pair (upper-left corner) and an existing holophrastic construction (upper-right corner),
the repair strategy holophrase — item-based + lexical — addition learns an item-based construction (bottom-left corner) and a lexical
construction (bottom centre), along with a link in the categorial network (bottom-right corner).

“What is the tiny —
"::- block made of?” (&) ‘ o @ ®
0 L ey - ®
e - — B ©

what-is-the-?x-
block-made-of?
X)

what-is-the-block-made-of?-cxn

“What is the e
block — G @
made of?” Q

sick made o< (&) (S (®)

Slots: [ what-is-the-?x-block-made-of?(?X) <> 2f ]
Arguments: [ ]

Arguments: [ tiny <> % ]

Figure 6. Based on a new observation and an existing holophrastic construction, the repair strategy holophrase — item-based +
lexical + holophrase — deletion learns a holophrastic construction, an item-based construction and a lexical construction, along with a
link in the categorial network.

combination of the observation and the holophrastic construction, an item-based construction wHAT-1s-
THE-?X-BLOCK-MADE-OF?-CXN and a lexical construction TiNy-cxN are created (shown on the bottom of
the figure). The item-based construction contains one open slot, as indicated in its slot specification,
which can be filled by something that is of type ‘what-is-the-?x-block-made-of?(?X)" and binds the
?f” variable in its meaning representation. The lexical construction provides an argument of type
‘tiny” which binds the ‘?g’ variable in its meaning representation, as shown in its argument specifica-
tion. A link between the categories ‘what-is-the-?x-block-made-of?(?X)" and ‘tiny’ is also added to
the categorial network, as shown in the bottom right corner of the figure. When applying both the
item-based construction and the lexical construction, the categories of the argument and the slot match
through the categorial network and the open variables in their respective meaning representations are
unified. The result is the utterance What is the tiny block made of? in the production direction and a fully
integrated semantic network in the comprehension direction. We refer to this repair strategy by the
name holophrase — item-based + lexical — addition.
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Figure 7. Based on a new observation and an existing holophrastic construction, the repair strategy holophrase — item-based +
lexical + lexical — substitution learns an item-based construction and two lexical constructions, along with two links in the categorial
network.

/(19 “block” 4—b < 7p
: “What is the red e T
“+-:. block made of?” @ . Slots: [ ‘

Arguments: [ block <> ?b]

Slots:
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Slots: [ what-is-the-?x-?y-made-of2(?X) <> %c
what-is-the-?x-?y-made-of2(?Y) > ?g]
Arguments [ ]

Figure 8. Based on a new observation and one or more existing lexical constructions, the repair strategy lexical — item-based learns
an item-based construction, along with categorial links between the arguments of the lexical constructions and the open slots in the
item-based construction.

The second repair, called holophrase — item-based + lexical + holophrase — deletion, deals with novel
observations that reduce the form and/or meaning of an existing holophrastic construction. An
instantiation of this repair is shown in figure 6. In the example, the observation concerns the form
and meaning of the utterance What is the block made of?, where a holophrastic construction wHAT-1s-THE-
TINY-BLOCK-MADE-OF?-CXN already exists. The repair does not only create a novel holophrastic construc-
tion WHAT-IS-THE-BLOCK-MADE-OF?-CXN, which covers the observation, but also creates an item-based
construction WHAT-1S-THE-2X-BLOCK-MADE-OF?-CXN and a lexical construction TiNY-cxN that generalize
over the original holophrastic construction. The item-based construction and lexical construction
are linked through the categorial network. These constructions are not used to process the current
observation, but concern generalizations that could be made based on this observation and a previ-
ously acquired holophrastic construction.

The third repair, called holophrase — item-based + lexical + lexical —substitution, handles cases where
both the form and the meaning of an observation differ from an existing holophrastic construction
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in some aspect. An instantiation of this repair is shown in figure 7. The form and meaning of the

utterance What is the cylinder made of? are observed here, and a holophrastic construction covering
What is the block made of? already exists. The repair creates an item-based construction WHAT-1S-THE-?
X-MADE-OF?-CxN along with the lexical constructions cYLINDER-cxN and BLock-cxN. Two categorial links
are also created, which associate the arguments of the lexical constructions with the open slot in the
item-based construction.

During learning, there will often be multiple previously acquired holophrastic constructions that
can be used as a basis for generalization. Constructions that share more form or meaning predicates
with the observed form-meaning pair are always preferred. If multiple constructions are equally
similar to the observation, the construction with the highest entrenchment score (see §4.2.8) is
preferred.

4.2.5. Repairs for acquiring constructions based on a partial analysis

A next class of repair strategies handle cases where the existing constructions of a grammar do not
fully cover an observation, but where a partial analysis is available. This partial analysis is either the
result of the application of one or more lexical constructions, or of the application of an item-based
construction, potentially in combination with one or more lexical constructions. These two cases are
handled by two designated repairs.

The first repair, which deals with cases where one or more lexical constructions could apply, is
referred to as the lexical — item-based strategy. An instantiation of this repair is shown in figure 8. Here,
the observation consists of the form and meaning of the utterance What is the red block made of?. Two
lexical constructions covering block and red are already available. The repair builds a new item-based
construction WHAT-IS-THE-?X-?Y-MADE-OF?-CxN, which includes two slots. Along with this construction,
two categorial links are also learned. The first link captures the association between the rep-cxx and
the “?X’ slot in the item-based construction, while the second link captures the association between the
BLOCK-CxN and the ‘?Y” slot in the item-based construction.

The second repair, which deals with cases where an item-based construction could apply, is referred
to as the item-based — lexical repair. An instantiation of this repair is shown in figure 9. Here, the
WHAT-IS-THE-?X-MADE-OF-CXN can apply to an observation of the utterance What is the block made of?
However, as the grammar does not yet include a construction that covers block, the observation cannot
be handled successfully during routine processing. The repair creates a new lexical construction, in
this case the BLock-cxN, covering the part of the observation that was not yet covered, as well as a
categorial link between the new lexical construction and the respective slot in the existing item-based
construction. This repair also handles cases where the partial analysis is the result of the application of
an item-based construction in combination with one or more existing lexical constructions.

4.2.6. Repairs for extending the categorial network

The final class of repairs handles cases where all item-based and lexical constructions that are needed
to cover an observation are already part of the grammar, but where the categorial network does not yet
contain all required links between slots and their fillers.

This class of repairs has only a single member, namely the add-categorial-links repair. An instantia-
tion of this repair is shown in figure 10. The observation concerns an utterance What is the sphere
made of? along with a representation of its meaning. The item-based construction capturing the pattern
What is the ?X made of? and the lexical construction covering sphere are already part of the grammar,
but cannot combine because the categorial network does not contain a link between the argument
provided by the lexical construction and the open slot in the item-based construction. The repair
detects that it is the absence of a categorial link that blocks the construction application and adds this
link to the categorial network.

Note that this repair strategy is somewhat different than the other repair strategies, as its problem-
solving capacities do not rely on the gold standard annotation. Through a search process, it can
detect the absence of required links in the categorial network when processing an utterance in the
comprehension direction or a meaning representation in the production direction.
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Figure 9. Based on a new observation and an existing item-based construction, the repair strateqy item-based — lexical learns a
lexical construction, along with a categorial link between the argument of the lexical construction and the open slot in the item-based
construction.
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Figure 10. Based on a new observation and a number of existing item-based and lexical constructions, the repair strategy
add-categorial-links learns one or more categorial links between the lexical constructions and the item-based construction.

4.2.7. Competition between repair strategies

Repair strategies are often in competition with each other, as different generalizations can be made
based on the same observation and previously acquired constructions. For example, the nothing—
holophrase repair can always apply, but other repairs lead in many cases to more useful generalizations.
We therefore specify the order in which repairs are activated by the meta-level architecture. Only if an
earlier repair detects that it cannot adequately handle a problem, does the next repair become active.
The order of repair strategies in the meta-level architecture is the following:

(i) add-categorial-links: Problems are preferably solved by adding links between existing nodes in the
categorial network, without creating any new constructions.

(ii) item-based — lexical: If a lexical construction is missing, it is created along with a link in the
categorial network.

(iii) holophrase item-based + lexical + lexical —substitution: An item-based and two lexical constructions
are created based on an existing holophrastic construction, along with two categorial links.

(iv) holophrase — item-based + lexical —addition: An item-based and a lexical construction are created
based on an existing holophrastic construction, along with a categorial link.

(v) holophrase — item-based + lexical + holophrase —deletion: A holophrastic construction, an item-based
construction and a lexical construction are created based on an existing holophrastic construc-
tion, along with a categorial link.

(vi) lexical — item-based: An item-based construction with open slots is created, along with categorial
links between the arguments of the lexical constructions and these open slots.
(vii) nothing — holophrase: If all other repairs fail, a new holophrastic construction is created.
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The order of activation of repair strategies reflects that the creation of new categorial links is preferred
over the creation of new constructions (repair (i)). If new constructions need to be created, lexical
constructions are preferred (repair (ii)). If the creation of lexical constructions does not suffice, the
creation of item-based constructions (repairs (iii)—(vi)) is preferred over the creation of new holophras-
tic constructions (repair (vii)).

4.2.8.Updating entrenchment scores

Psychological and linguistic research has shown that the entrenchment of constructions and categories
plays an important role in shaping the grammar of language users [20,97-99]. Entrenchment refers
to the process in which grammatical knowledge that is successfully used during communicative
interactions becomes more and more engrained over time. Different factors influence the degree of
entrenchment of constructions and categories, communicative success and frequency being the most
important.

In our model, entrenchment is operationalized through the assignment of scores to constructions
and links in the categorial network. During language processing, constructions with higher entrench-
ment scores are preferred over constructions with lower scores. The entrenchment scores of construc-
tions range between 0 and 1, with 0 indicating minimal entrenchment and 1 maximal entrenchment.
When a new construction is created, it is assigned an initial entrenchment score of 0.5. When a
construction is successfully used to process an observation from the corpus, its score is increased
by 0.1. At the same time, competing constructions are punished by decreasing their scores by 0.3.
Competitors are defined as constructions that could also have contributed to the successful analysis of
the same observation. There is thus no built-in bias towards more general constructions. However, the
fact that more general constructions are applicable in a broader range of situations and are therefore
more frequently used, will, owing to the dynamics of rewarding successful usage and punishing
competitors, lead to higher entrenchment scores for more general constructions. The exact values by
which constructions are rewarded and punished do not influence the global dynamics of the learning
process, as long as they are positive and negative, respectively (see earlier work by, among others,
[100,101]).

An entrenchment score is also assigned to each link in the categorial network. This score reflects the
number of times that a link has been used in language comprehension or production. The entrench-
ment of the categorial links reveals the association strength between slots and their fillers. Nodes in
the network of which the links have a similar distribution can be seen as close to each other in terms
of grammatical category. Categorial distance can be computed based on the network using similarity
metrics such as (weighted) cosine similarity. While categorial distance is not exploited in the experi-
ments reported on in this paper, it could play an important role in experiments that operationalize
(creative) language production strategies.

5. Experiments

This section presents a validation of our methodology for acquiring constructions on the CLEVR
dataset discussed in §3. We first describe the experimental set-up (§5.1) and then present the evaluation
results (§5.2).

5.1. Experimental set-up

The primary experiment consists of processing the 47 134 observations from our training set using the
meta-level architecture introduced above. For each experimental run, the observations are shuffled,
so that any side-effects that might be caused by the order in which the observations are presented
are levelled out. The learning operations, which are implemented by means of repair strategies, are
only active when an observation cannot be processed successfully by the constructions that have been
learned so far. Entrenchment scores are updated after each communicative interaction, also when the
activation of the meta-level was not required. Thanks to this experimental design, the learning process
by which linguistic knowledge is gradually built up can be monitored in detail. The learning process is
evaluated through four quantitative metrics: communicative success, grammar size, number of constructions
per type and active repair strategies.
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— Communicative success over time is computed by comparing the analysis of the learner after each
observation with the gold standard annotation in the corpus. All observations that could be
successfully handled by the routine layer are assigned the value 1. All observations that required
the activation of a repair that needs access to the gold standard are assigned the value 0. The
remaining observations, which were handled by the repair add-categorial-links, are also assigned
the value 1. This is because the meta-reflective problem-solving capacity that was needed did
not require any external information or feedback. The choice for handling such cases at the
meta-level is motivated by reasons of efficiency and conceptual clarity (see §4.2.2). The binary
values returned by the communicative success metric are plotted using a sliding window of 50
observations.

— Grammar size over time is computed by counting after each observation the number of construc-
tions in the grammar that enjoy at least some level of entrenchment. Constructions in which the
entrenchment score has reached 0, corresponding to minimal entrenchment, are not counted.

— Number of constructions per type over time counts the constructions in the grammar in the same
way as the grammar size metric. However, the constructions are now divided into three groups:
holophrastic constructions, item-based constructions and lexical constructions. Constructions
with no slots or arguments are counted as holophrastic constructions, constructions with slots
and no arguments are counted as item-based constructions, and constructions with arguments
and no slots as lexical constructions.

— Active repair strategies over time are computed for each repair individually by recording after
each observation whether the repair has been active. Depending on whether it was active, a 0 or
1 is recorded. The binary values returned by this metric are plotted using a sliding window of 50
interactions.

A secondary experiment concerns the processing of the 10 044 observations from our test set using the
grammar that was learned on the training set. In this experimental set-up, the model has no access
to the gold standard and can thus not use any of the repairs except for the add-categorial-links repair.
While this experiment corresponds exactly to the final phase of the primary experiment, it is reported
on in this paper so that later comparison with alternative methodologies will be straightforward. Here,
communicative success is averaged over the whole test set. Grammar size and number of constructions
per type do not change during the experiment. The active repair strategies metric is not applicable in
this experimental set-up.

The experimental results reported below are based on 10 independent experimental runs. The
observations were shuffled before each run. The error bars that are plotted represent percentiles 5 and
95.

5.2. Results

The results obtained through the primary experiment are shown in figures 11-13. Figure 11 displays
the communicative success and grammar size metrics, respectively, on the left and right y-axis as a
function of the number of observations (x-axis). The left graph zooms in on the first 2000 observations
while the right graph includes all 47 134 observations from the dataset. We can see that the communica-
tive success starts at 0, as the experiment starts with an empty inventory of constructions. The degree
of communicative success rises rapidly, with more than 90% of the observations being successfully
processed by the learned grammar after only 500 observations have been encountered. After 2000
observations, communicative success is already achieved in 99.6% of new observations.

The grammar size starts at 0 constructions and grows rapidly in the first phase of the experiment.
After 500 observations, the grammar has reached its peak size of around 230 constructions that have
some degree of entrenchment. This number then declines as a result of the rewarding and punishing of
constructions. At the end of the learning process, the resulting grammar consists of 101.5 constructions
on average.

An analysis of the types of constructions that are part of the learned construction inventory is
provided in figure 12. The left graph zooms in on the first 1000 observations, while the right graph
provides a complete picture. The results show that holophrastic constructions flourish in the earliest
phase of the experiment. In a second phase, item-based and lexical constructions take over the role
of the holophrastic constructions, with an abundance of item-based constructions being created. Over
the course of the experiment, the linguistic inventory of the learner gradually reaches a stable state
consisting of a limited number of entrenched lexical constructions and (more general) item-based
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Figure 11. Evolution of communicative success (left y-axis) and grammar size (right y-axis) over time. The left figure zooms in on the
first 2000 observations while the right figure shows a global view of the learning dynamics over the whole dataset. Communicative
success is drawn using a sliding window of 50 observations. The error bars correspond to the percentiles 5 and 95 averaged over 10
experimental runs.
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Figure 12. Evolution over time of the number of constructions per type with an entrenchment score > 0. The left figure zooms in
on the first 1000 observations while the right figure shows a global view of the dynamics over the whole dataset. The error bars
correspond to the percentiles 5 and 95 averaged over 10 experimental runs.
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Figure 13. Active repairs over time. The left figure zooms in on the first 1000 observations while the right figure shows a global view
of the dynamics over the whole dataset. A sliding window of 50 observations was used. The error bars correspond to the percentiles 5
and 95 averaged over 10 experimental runs.

constructions. At the end of the experiment, the grammar consists on average of 10.2 holophrastic
constructions, 57.1 item-based constructions and 34.2 lexical constructions. These results show that the
holophrastic constructions have not yet completely disappeared after 47 134 observations and that the
theoretical maximum of 35 lexical constructions was attained in 7 out of 10 experimental runs. Note
that it is the dynamic evolution of the number of constructions per type over time that is important,
rather than the absolute number of constructions at a given moment in time.

Figure 13 shows the active repair strategies over time. The graph on the left zooms in on the first
1000 observations, while the graph on the right captures the full experiment. The graphs show that
the nothing — holophrase repair is the most active repair in the first phase of the experiment. After that,
the holophrase — item-based + lexical + lexical —substitution repair, and to a lesser extent the holophrase —
item-based + lexical —addition and holophrase — item-based + lexical + holophrase — deletion repairs are active.
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Figure 14. Fragment of a categorial network emerging from the experiment. The network captures how the arguments of
constructions can fill the slots of other constructions. The entrenchment scores of the categorial links are not shown.

As a result of the bootstrapping of item-based and lexical constructions by these repairs, the lexical
— item-based and item-based — lexical repairs become active, with the lexical — item-based repair being
the predominant repair in this phase of the experiment. Once the inventory of item-based and lexical
constructions is in place, the add-categorial-links repair can solve almost all remaining problems without
relying on the gold standard or any other form of external information.

Along with an inventory of holophrase, item-based and lexical constructions, a network of
grammatical categories emerges from the experiment. This network captures the association
strength between constructions in terms of slots and their observed fillers. The nodes and links
in the network are incrementally added by the application of repairs, while the entrenchment
scores of the categorial links are updated after each observation. The categorial network at the
end of the experiment counts 339.6 nodes and 1419.8 links on average. A fragment of such
a network, with the entrenchment scores omitted, is shown in figure 14. In this figure, we
see the categories of 12 arguments of 12 lexical constructions and their associations with the
categories of 10 slots of 3 item-based constructions. For example, the category of the argument
provided by the LARGE-cxN, shown in the bottom-left part of the figure is compatible with
the categories of three slots of three different item-based constructions. These are the ‘?Y’ slot
of the WHAT-1S-THE-?2X-OF-THE-?Y-2z-2U?-CxN, the ‘?X’ slot of the THERE-IS-A-?2X-?Y-?2Z-;-WHAT-?2U-1S-IT?-CXN
and the “?X’ slot of the 1s-THERE-A-2x-?v?>-cxXN. Alternative categories that are compatible with the
?X’ slot of this last construction are, according to the network, the categories of the arguments
provided by the smALL-CXN, RED-CXN, YELLOW-CxN and GREEN-CXN. The grammatical categories of
the emerged language, defined as generalizations that capture the behaviour of slots and their
potential fillers, are captured by the combination of nodes and weighted links in the categorial
network. This usage-based way of capturing the categories of a language is highly flexible, as
it can elegantly include both frequent and rare categorial associations in a fine-grained manner.
Based on the objectives and desires of the individual researcher, graph analysis techniques can
straightforwardly be used to compute distances between nodes, or to cluster nodes into more
coarse-grained categories. A complete visualization of this categorial network can be found in
appendix B.

We finally conduct a secondary experiment, which consists in processing all observations
from the test set using the grammars resulting from the different experimental runs of the
primary experiment. The average communicative success amounts to a perfect 100% in both the
comprehension and production direction. The average grammar size amounts to 101.5 construc-
tions, of which 10.2 are holophrastic constructions, 57.1 are item-based constructions and 34.2
are lexical constructions.

6. Discussion and conclusion

The scientific contribution of the methodology and experiments presented in this paper is
threefold. First of all, they provide computational evidence for the cognitive plausibility of
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constructivist theories of language acquisition. These theories attribute the ability of children
to acquire language to two main cognitive capacities: intention reading and pattern finding.
Intention reading deals with reconstructing the intended meaning of observed utterances, while
pattern finding implements generalization processes that distil abstract schemata embodying
the linguistic knowledge of a language user from these reconstructed utterance-meaning pairs.
These schemata can then be used to fulfil the communicative function of language through the
comprehension and production of natural language expressions. The methodology introduced
in this paper presents a mechanistic model of the pattern-finding capacity. Based on utteran-
ces paired with a representation of their meaning, the learning algorithm gradually builds
up an inventory of concrete to abstract form-meaning mappings, called constructions, along
with a network of emergent grammatical categories that capture how the constructions of the
grammar can combine to collaboratively comprehend and produce utterances. The experiments
show that a meta-layer consisting of a small number of general repairs, which become active
if an utterance cannot be successfully processed by the grammar learned so far, effectively
leads to learning dynamics that are similar to those described in the psycholinguistic literature
[1,14,45]. In the first phase of the learning process, the learner acquires holistic mappings
between utterances and their meaning representation. Soon after that, holophrastic constructions
are generalized to item-based constructions that integrate a variable slot. At the same time,
this generalization process leads to the emergence of slot-filling constructions, here called lexical
constructions. Along with the item-based and lexical constructions, a network of grammatical
categories emerges, capturing the distribution of construction slots and their observed fillers.
In a third phase, more abstract item-based constructions emerge, with an increasingly large
number of variable slots. In the final phase of the learning process, most constructions have
already been acquired and most remaining problems can be solved by adding new links to
the categorial network. The learning dynamics are influenced by the degree of entrenchment of
constructions and categorial links. Constructions that are often successfully used become more
entrenched, while their competitors are suppressed. As a result of this process of entrenchment,
the grammar reaches a stable state, while it remains adaptive to any changes in the discourse
or environment. Similar dynamics have been observed in earlier experiments in the field of
evolutionary linguistics, as for instance in the experiment on the emergence of compositionality
in a population of autonomous agents by De Beule and Bergen [102].

The second contribution of the methodology and experiments presented in this paper
concerns the corroboration of the theoretical underpinnings of construction grammar theories
[3,4,10]. In particular, we provide a fully operational model of how a communicatively adequate
linguistic system can be captured in the form of a collection of learned form-meaning map-
pings. These mappings can cover syntactico-semantic patterns of variable extent and degree
of abstraction. The emerged constructions provide a unique insight into the compositional
and non-compositional aspects of the learned language, as a consequence of the pattern-find-
ing processes implemented by the repair strategies. Through these pattern finding processes,
non-compositional pairings between aspects of observed form and meaning are included in
constructions, while compositional aspects are generalized over through the use of variable
slots. Like constructions, grammatical categories also emerge during the language acquisition
process. In the spirit of radical construction grammar [4], categories are construction-specific and
functionally motivated. They are conceived as fine-grained abstractions over observed syntactico-
semantic usage patterns, and are captured in the form of a dynamic and adaptive categorial
network.

Finally, the methodology and experiments presented in this paper pave the way for learn-
ing computationally tractable, large-scale, usage-based grammars that facilitate both language
comprehension and production. The proposed learning algorithm supports online, interactive,
incremental, transparent and data-efficient learning. The learner builds up its human-interpreta-
ble inventory of constructions and categories through the application of transparent syntactico-
semantic generalization processes. Already after a single observation, the fragment of linguistic
knowledge acquired by the learner can be successfully used for language comprehension and
production. As more and more utterance-meaning pairs are observed, the linguistic knowl-
edge of the learner quickly expands and becomes better fit for achieving their communica-
tion goals. As a result of the dynamics of rewarding successful construction applications and
punishing competing ones, the grammar of the learner remains ever-adaptive to any changes
in the task or environment. Owing to their online, interactive, incremental, transparent and
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data-efficient nature, the proposed mechanisms for learning computational construction gram-
mars that facilitate both language comprehension and production can serve as an excellent basis
for implementing the language acquisition ability of autonomous agents. At the same time,
important challenges, limitations and scaffolds remain on different levels: (i) the model focuses
on pattern finding only, scaffolding the intention reading process, (ii) the data to which the
methodology is applied is still synthetic and thereby does not reflect actual language use and
(iif) the model integrates repair strategies for meta-level learning during language comprehension
only, limiting creative language use in the production direction.
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Appendix A

A.1. Sample of CLEVR utterance—meaning pairs

‘Are any big yellow cylinders visible?’

(get-context  ?source-1)

(filter target-1  ?source-1  ?shape-6)
(filter 7target-2  2target-1  ?color-16) (bind  shape-category ?shape-6  cylinder)
(filter 7target-9310 ?target-2  7size-4) (bind  color-category ?color-16 yellow)
(exist  Ttarget-44 7largel-9310)4) (bind size-category 7size-4 large)

‘How big is the cyan rubber object?’

(get-context ?source-1)
(filter ?target-1 ?7source-1 ?shape-8)
(filter 2target-2 ?target-1 ?material-2) (bind shape-category ?shape-8 thing)
(filter target-63565 ?target-2 ?color-14) (bind material-category ?material-2 rubber)
(unique ?target-object-1 ‘7targel—63565)4) (bind color-category ?color-14 cyan)
(query ?target-55 2target-object-1 ?attribute-18)

(bind attribute-category ?attribute-18 size)
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‘The blue thing is what shape?’

(get-context 2source-1)

l

(filter  target-1 Isource-1 ?shape-8)

"

(filter ~ 2target-2 arget-1 Icolor-6) (bind  shape-category  ?shape-8 thing)
(unique  ?source-10 arget-2) (bind  color-category 2color-6  blue)

|

(query Ttarget-8 Isource-10 Tattribute-2)

T

(bind  attribute-category attribute-2 shape)

‘The large cyan object has what shape?’

(get-context ?source-1)

(filter ?target-1 ?source-1 ?shape-8)

(filter ?target-2 ?target-1 ?color-14) (bind shape-category ?shape-8 thing)
(filter “?target-17327 Marget-2 ?size-4) (bind color-category ?color-14 cyan)
(unique ?source-9 ’]larget-l7327)J (bind size-category ?size-4 large)

(query “?target-7 ?source-9 ?attribute-2)

(bind attribute-category ?attribute-2 shape)

‘There is a large yellow rubber object; what is its shape?’

(get-context ?source-1)

(filter ?target-1 ?source-1 ?shape-8)

(filter 2target-2 2target-1 ?material-2) (bind shape-category ?shape-8 thing)

(filter ?target-25938 2target-2 ?color-16). (bind material-category ?material-2 rubber)
(filter ?target-25939 ?target-25938 ?size-4) (bind color-category ?color-16 yellow)
(unique ?source-10 target-25939) (bind size-category ?size-4 large)
(query ?target-8 ?source-10 ?attribute-2)

(bind attribute-category ?attribute-2 shape)

‘What number oflarge gray objects are there?’

(get-context  ?source-1)
(filter target-1  ?source-1  ?shape-8)
(filter target-2  target-1  ?color-2) (bind  shape-category ?shape-8  thing)
(filter Marget-71347 arget-2  7size-4) (bind  color-category ?color-2  gray)

R

(count! ?target-19 ’.7ta:get-71347)45 (bind  size-category 7size-4 large)
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‘The red object has what size?’

(get-context 2source-1)

l

(filter  target-1 7source-1 ?shape-8)

(filter ~ ?target-2 target-1 2color-4) (bind  shape-category Ishape-8 thing)
(unique ?Isource-9 arget-2) (bind  color-category 2color-4  red)

(query Marget-7 2source-9 Zattribute-6)

T

(bind  attribute-category attribute-6 size)

‘What color is the small rubber cube?’

(get-context ?source-1)

(filter arget-1 ?source-1 ?shape-2)

(filter target-2 ?target-1 ?material-2) (bind  shape-category ?shape-2 cube)
(filter ?target-80336 target-2 7size-2) (bind material-category?material-2 rubber)
(unique ?Largel»obja:t-l‘YLarget-SOB&J (bind size-category ?size-2 small)

(query Marget-3 ?target-object- 1 attribute-4)

(bind attribute-category?attribute-4 color)

‘How many small brown spheres are there?’

(get-context ?source-1)

(filter Mtarget-1  ?source-1 ?shape-4)

(filter ?target-2 target-1  ?color-10) (bind  shape-category ?shape-4  sphere)
(filter ?target-50853 target-2  7size-2) (bind  color-category ?color-10 brown)
(count! target-19 ‘hargel—SOSSfS)Aj (bind  size-category ?size-2  small)

‘What is the material of the tiny cyan ball?’

(get-context ?source-1)
(filter target-1 ?source-1 ?shape-4)

(filter ?target-2 ?target-1 ‘?color-l4),\(bind shape-category ?shape-4 sphere)

(filter ?target-93848 target-2 7size-2) (bind color-category ?color-14 cyan)
(unique ?target-object-1 ?targel-93848)4) (bind size-category 7size-2 small)

(query “target-4 ?target-object-1 attribute-8)

(bind attribute-category ?attribute-8 material)

Appendix B

B.1.Categorial network visualizations

Figures 15 and 16 show the agent's categorial network after 2000 observations.
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Figure 15. A categorial network after 2000 observations. We observe the formation of four separate connected components with
clearly distinguishable hubs reflecting the learned grammatical categories. The first component, visualized here in the top-left corner,

1,

hosts all property types (e.g. ‘colour, ‘material,
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Figure 16. When zooming in on the object property component from the categorial network shown in figure 15, the network hubs
become more clearly visible, with a cluster of colour terms in the middle of the bottom part of the figure standing out. The presence of
such a cluster indicates that these nodes have frequently been observed in the same item-based slots. Nodes are clustered in terms of

shared common neighbours by graphviz’ FDP renderer, using the Fruchterman—Reingold heuristic.

size’). The second component, shown in the bottom-left corner, contains object
properties (e.g. ‘green; ‘metallic, ‘small’). The third and fourth components, depicted in the top-right and bottom-right corners,
incorporate the objects themselves, in their singular form (e.g. ‘object; ‘cylinder;ball’) and plural forms (e.g. ‘objects; ‘cylinders,
‘balls’), respectively. The numbers on the network edges reflect the frequencies with which slot-filler links have been observed by the
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