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This paper documents and reviews the state of the art concerning
computational models of construction grammar learning. It brings together
prior work on the computational learning of form-meaning pairings, which
has so far been studied in several distinct areas of research. The goal of this
paper is threefold. First of all, it aims to synthesise the variety of
methodologies that have been proposed to date and the results that have
been obtained. Second, it aims to identify those parts of the challenge that
have been successfully tackled and reveal those that require further
research. Finally, it aims to provide a roadmap which can help to boost and
streamline future research efforts on the computational learning of large-
scale, usage-based construction grammars.
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Learning computational construction grammars

The aim of this paper is to survey prior work on the computational learning of
construction grammars, to identify gaps in the state of the art and to propose a
perspective on the future of the field. The computational learning of construc-
tion grammars has traditionally been studied independently in different fields of
research, in particular linguistics, cognitive science, computer science and artifi-
cial intelligence. As a consequence, research on this topic has been fragmented
and interaction between the researchers involved has been scarce, as witnessed
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by a lack of cross-referencing. In order to address this issue, this paper brings
together the variety of methodologies that have been proposed in the literature
and synthesises the results that have been achieved to date. Specifically, we define
14 criteria in light of which we review 31 models of construction grammar learn-
ing. We then identify important gaps in the state of the art and propose a roadmap
that can help streamline future research efforts and investments. Our hope is to
inspire a new generation of construction grammarians to boost progress on scal-
ing usage-based constructionist approaches to language.

On a high level, computational models for learning construction grammars
are motivated by three main reasons. A first motivation is theoretical in nature
and concerns the computational operationalisation and validation of usage-based
theories of language acquisition. As usage-based theories of language argue that
languages are learnt through their use in communication, computational models
of language acquisition can contribute crucial evidence in favour or against the
scalability of specific theoretical arguments (see, e.g., Chang 2008). Second, the
use of computational models brings important methodological advantages, as it
enforces the use of precise and testable operational definitions, allows for the
detection of theory-internal inconsistencies, and facilitates a fine-grained com-
parison of different theories. Such comparisons can play an important role in
identifying inter-theoretical knowledge gaps and divergences (Bender 2008;
Miiller 2015). Finally, the machine learning of construction grammars is impor-
tant from an application and valorisation perspective, as it facilitates the use of
construction grammar insights and analyses in broad-domain language technol-
ogy applications (van Trijp et al. 2022). Examples of such applications include
visual question answering (see, e.g., Nevens et al. 2022; Verheyen et al. 2023), the
frame-semantic analysis of discourse (see, e.g., Willaert et al. 2020; Beuls et al.
2021) and the construction-based analysis of corpora (see, e.g., EHAI 2023). Apart
from direct applications, computational models of language acquisition are also
relevant to the broader fields of computational linguistics and artificial intelli-
gence as they provide a method for intelligent agents to learn to communicate
through protocols that exhibit the robustness, flexibility and adaptivity of human
languages (Van Eecke 2018; Beuls & Van Eecke 2023).

The remainder of this paper is structured as follows. Section 2 presents the
criteria that were used to include prior research efforts into this literature review,
as well as the criteria in light of which these efforts are described in Section 3.
Section 4 synthesises the state of the art, identifies challenges and opportunities,
and proposes a roadmap for future research. Section 5 concludes the paper.
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2. Methodology

2.1 Inclusion criteria

The scope of this literature review concerns, to the best of our knowledge, all pub-
lished prior research on the computational learning of construction grammars, as
defined through the following inclusion criteria:

1. Is the model concerned with learning form-meaning mappings? This crite-
rion concerns the nature of the linguistic knowledge that is learnt. Concretely,
we only include models that concern the learning of form-meaning mappings.
The selection is not influenced by the theoretical framework that is adopted
nor by whether the authors situate their work within the field of construction
grammar or not.

2. Is the model computationally operationalised? The second criterion con-
cerns the operationality of the learnt models. We only include models that
have been implemented computationally.

3. Can the model learn more than lexical mappings? The third criterion con-
cerns the nature of the constructions that are learnt. We only include models
that acquire structures that transcend the level of individual words. For an
overview of models that deal with vocabulary learning only, we refer the inter-
ested reader to Krenn et al. (2020).

As research within this scope has been carried in a variety of fields of research,
theoretical frameworks, and scientific traditions, it was not feasible to design key-
word searches or queries in scientific databases that would yield all relevant mod-
els. We came to the conclusion that any attempt to systematise the search process
in such a manner left out important contributions that satisfy the inclusion cri-
teria. Instead, we qualitatively scrutinised the literature to the best of our abilities
and could include 31 models that satisfy the inclusion criteria.

2.2 Discussion criteria

Prior work on learning construction grammars stems from different fields of
research and therefore adopts a wide variety of methods, terminologies, and
experimental designs. In order to streamline the discussion and facilitate a mean-
ingful comparison, we introduce 14 discussion criteria that will guide the review
of the included models.
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10.

11.

12.

13.

14.

Learning task. Which learning task does the model address? Which problem
is the model designed to solve? Which evaluation criteria are used?

Dataset. To which datasets has the model been applied?

Input. What is the nature of the input to the model?

Form complexity. What is the morpho-syntactic complexity of the linguistic
input?

Meaning complexity. What is the semantic complexity of the linguistic input?
Grounding. Is the meaning representation grounded in a situation model?
Segmentation level. What level of segmentation of the input is provided to
the model (phonemes, graphemes, words, or utterances)?

Lexicon. Is a predefined lexicon provided?

Grammatical categories. Is a predefined set of grammatical categories pro-
vided?

Incremental learning. Does the model learn in an incremental fashion, i.e.,
dynamically extending its knowledge after each exemplar?

Bi-directional grammar. Can the learnt grammar be used for both language
comprehension and production?

Abstraction level. What is the level of abstraction of the learnt constructions?
Is the grammar limited to item-based constructions and slot-filling construc-
tions or does it include hierarchical and recursive constructions?
Non-compositionality. Is the learning algorithm able to capture non-
compositional aspects of language use? Is all meaning lexicalised or can
grammatical constructions also contribute semantic information?
Benchmark. Is the data that was used during the learning and evaluation
process precisely described and available to the community?

Apart from guiding the literature review, the discussion criteria are also used
to organise the schematic synthesis of the literature presented in Table 1. Here,
qualitative descriptions are provided for learning task, dataset, input, form com-

plexity and meaning complexity. Boolean values are used to assess the criteria

of grounding, lexicon, grammatical categories, incremental learning, bi-directional
grammar, non-compositionality and benchmark. Segmentation level can either be
‘phonemes, ‘graphemes, or ‘words, and abstraction level can either be ‘item-based;,
or ‘hierarchical, with only the highest level of abstraction being listed. The infor-
mation contained in the table reflects the properties of the models as presented in
the papers that introduce them, without implying that any limitations are inher-
ent to the methodologies.
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3.

Review of prior literature

This section provides a detailed review of all included models. A comparative

analysis of all models in terms of the discussion criteria introduced in Section 2.2
is also provided in Table 1. Readers who are primarily interested in the higher-
level picture can safely skip ahead to Section 4, where we present a synthesis of
the details covered in this section.

On the highest level, the models can be organised according to the overall

learning task that they are designed to tackle:

1.

Learning a maximally concise grammar. The task is to find a minimal set of
constructions that optimally covers a corpus of language use.

Learning a grammar from utterance-meaning pairs. The task is to learn a
grammar that maps between utterances and their meaning representation,
whereby a gold semantic annotation is provided for each utterance.
Learning a grammar under referential uncertainty. The task is to learn a
grammar that maps between utterances and their meaning representation,
whereby a superset of the gold semantic annotation is provided. The referen-
tial uncertainty stems from the fact that the exact meaning representation is
not provided.

Learning a grammar from a situation model. The task is to learn a grammar
that maps between utterances and their meaning representation, whereby no
gold semantic annotation is provided. The meaning has to be abductively
derived from a situation model.

The following sections reflect the organisation of the models in terms of these four
learning tasks.
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3.1 Learning a maximally concise grammar

The first category of models addresses the task of finding a minimal set of con-
structions that optimally covers a corpus of language use. Dunn (2017) introduces
a method to induce schematic patterns from large amounts of web-crawled corpus
data. These patterns take the form of a sequence of slots that can be filled by
word forms, morpho-syntactic categories or semantic categories. These categories
are provided in the form of annotation layers. The resulting grammars are eval-
uated against a held-out test set in terms of various measures, including minimal
description length and AP entrenchment (Ellis 2006). Variations on the method
are described by Dunn (2018, 2019, 2022, 2023) and Dunn & Tayyar Madabushi
(2021). Marti et al. (2021) present DISCO, a methodology for discovering con-
structional candidates in large web-crawled corpora of Spanish texts. Similar to
Dunn (2017), the semantic categories integrated into the ‘lexico-syntactic’ patterns
are modelled as clusters over the distributional semantic representations of lem-
mata. The retrieved patterns are evaluated using statistical association measures
as well as through manual evaluation by expert linguists.

This line of work models the induction of partially abstract patterns that
combine form-related and meaning-related features. While relevant from a con-
struction grammar perspective, the resulting patterns do not correspond to con-
structions that actually constitute mappings between aspects of form and
meaning. These models thereby do not support mapping between utterances and
their meaning representations.

3.2 Learning a grammar from utterance-meaning pairs

The second category of models addresses the task of learning a construction
grammar from utterance-meaning pairs.

Dominey (20053, 2005b, 2006) and Dominey & Boucher (2005) present a
neural model for the acquisition of holophrase constructions, item-based con-
structions and abstract constructions that capture argument structure relations
(e.g., transitives and ditransitives). Learners start with the capability to distinguish
between closed-class and open-class words and learn to map between slots in the
argument structure constructions and the semantic roles they take. Learning the
meaning of open-class words is tackled as an initial cross-situational learning step.
Item-based constructions are then learned from the remaining closed-class words
(e.g., XWAS Y TO Z BY A) by storing the mapping of the order of thematic roles (e.g.,
object, action, recipient, agent) and these closed-class elements as constructions
in the construction inventory.
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Alishahi & Stevenson (2008) present a computational model that mimics the
acquisition of verb argument structure. The input utterance-meaning pairs are
generated based on the 20 most frequent verbs of a subsection of the CHILDES
corpus (MacWhinney 2000). An example would be the utterance Mom put toys
in boxes paired to the meaning representation PUT[q,yse sovel(MOM (ygent
TOYS (ypppne> » IN[] (BOXES (1 crivamony ) <pestmvariony )+ 1he lexicon and semantic
roles are given to the model a priori. A construction is defined as a probabilistic
association between syntactic and semantic features of a verb and its arguments,
which emerged over a number of observations. Language processing is tackled as
a Bayesian prediction problem. In production, the model predicts the syntax from
a given semantic structure, and in comprehension, it predicts a (partial) seman-
tic structure for a given utterance. The authors present experiments for both
comprehension and production. The experiments show that the model exhibits
effects of syntactic and semantic bootstrapping, that it can recover from over-
generalisation, and that it is robust to noise, thereby mimicking the stages of child
language acquisition.

Chang (2008) presents a set of learning operators that operationalise Bayesian
model merging in the framework of Embodied Construction Grammar (ECG).
The task is to learn a grammar that can correctly comprehend utterances from a
held-out test set at certain intervals during training. The dataset that is used con-
sists in a schema-annotated subset of the CHILDES corpus, containing parent-
child interactions from a child from 15 until 24 months of age. A lexicon and
ontology are provided, corresponding to the linguistic knowledge of a child at
the two-word stage. Two classes of learning operators are introduced: mapping
operators and reorganisation operators. In the first class of operators, the simple
mapping operator maps either all, or a part of the uncovered form to its co-
occurring context information. Relational mapping creates a new construction
that encodes the syntactic and semantic relations between existing constructions
that could apply. The applied constructions become constituents in the newly
formed item-based construction. For the input utterance throw ball for example,
the lexical constructions for THROW and BALL may already be known. A new con-
struction is then created that encodes that THROW precedes BALL, and that the
ball is the throwee in the throwing event. Next, three operators can apply: merg-
ing, joining and splitting. The merge operator learns a generalised construction
for two constructions that contain shared structure. For example, THROW-BALL
and THROW-BLOCK can be generalised to THROW-TOY. A second reorganisation
operator joins existing constructions that have a certain overlap, for example
HUMAN-THROW and THROW-BOTTLE can be joined into HUMAN-THROW-BOTTLE.
Inversely, the splitting operator creates new constructions by taking the set dif-
ference between existing constructions, for example THROW-FRISBEE and THROW
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can be split into FRISBEE, and a new item-based construction, THROW-X, which
takes the newly created FRISBEE-construction as a constituent. After the applica-
tion of each applicable learning operator for a given input, the model uses mini-
mum description length to select the shortest grammar that covers the data. The
model is evaluated in relation to a hand-crafted gold standard grammar in terms
of form and meaning coverage, and description length. The presented experi-
ments operate at a rather small scale: first on 40 tokens of the verbs fall and throw,
then on 200 tokens of caused-motion and self-motion predicates. The author
reports that, in qualitative evaluation, both experiments show a resemblance to
the stages described in the literature of usage-based language acquisition, i.e.,
going from concrete to increasingly abstract constructions.

Kwiatkowski et al. (2010) introduce a unification-based learning algorithm,
which is designed to induce semantic parsers from corpora consisting of sentence
and logical-form pairs. The model learns a lexicon and parameters in Combina-
tory Categorial Grammar (CCG). In CCG, a fixed set of combinatory rules is
given, which govern how both categories and arguments of logical predicates can
be combined. A lexical entry consists of a word form, its syntactic category and a
logical predicate, for example: what S / NP : Ax.answer(x). The model initially
creates a holistic construction by mapping an entire sentence to its logical rep-
resentation. The main generalisation operator splits these overly specific entries
into smaller, more widely applicable lexical entries. Higher-order unification is
used to restrict the number of hypotheses, while safeguarding the integrity and
combinatory properties of the logical forms. As there are many possible analyses
for a given sentence, a log-linear model is used to select the most likely analysis.
Before training, the model is initialised with a list of NPs that are present in
the data (e.g., Texas - NP : tex). The model is evaluated for four languages and
two semantic representation formats on the GeoQuery dataset (Zelle & Mooney
1996). Kwiatkowski et al. (2011) apply a further iteration of the same methodology
to the more natural Air Travel Information System pilot corpus (ATIS — Hemphill
et al. 1990).

In contrast to the other work presented in this section, CCG assumes that
meaning is fully lexicalised, and thereby that language is fully compositional.

Gerasymova & Spranger (2010, 2012) investigate the acquisition of holophrase
constructions, item-based constructions and abstract constructions, represented
and processed using the Fluid Construction Grammar (FCG) framework (Steels
& De Beule 2006; van Trijp etal. 2022; Beuls & Van Eecke 2023), for Russian
aspectual marking in a tutor-learner language game setting (Steels 1998, 2001).
Holophrase constructions are learnt by a straightforward mapping operation
between an observed form and its meaning. Item-based constructions and
abstract constructions are learnt as generalisations over pre-categorised lexical
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items. Beuls et al. (2010) apply the same methodology to the conjugation of verbs
in Hungarian, with a special focus on its intricate agreement marking system.
Garcia Casademont & Steels (2015, 2016) and Garcia Casademont (2018) apply the
same paradigm to the acquisition of abstract, hierarchical and recursive construc-
tions.

Doumen et al. (2023) present a model of the co-acquisition of grammatical
categories and form-meaning mappings, ranging from lexical to item-based con-
structions. The model operationalises Tomasello’s (2003) pattern finding mecha-
nisms as a set of meta-layer learning operators in Fluid Construction Grammar.
The base operator stores an entire utterance with its meaning representation as a
holophrase construction. A second class of operators generalises over holophrase
constructions and new observations. When a difference in both form and mean-
ing is found, these operators learn the syntactic and semantic composition of the
observation by means of substitution, addition and deletion operations, result-
ing in item-based constructions, lexical constructions and a network of emergent
grammatical categories that governs how constructions can combine. A third class
of operators starts from partial analyses. When an observation is partially covered
by one or multiple constructions in the agent’s inventory, the model applies these
to the utterance, and a new item-based or lexical construction is learned, along
with corresponding categorial links. A final learning operator adds new categorial
links if all constructions that are necessary to cover an utterance are known, but
no links in the categorial network are found. The model is evaluated on a subset
of the CLEVR dataset (Johnson et al. 2017).

3.3 Learning a grammar under referential uncertainty

The third category of models addresses the task of learning a construction gram-
mar under referential uncertainty. While the previous category of models took as
input utterances paired with their semantic representation, this category of mod-
els takes as input utterances paired with a superset of their semantic representa-
tion. The fact that the meaning representation is noisy thereby poses an additional
challenge to the learning task.

A first line of work in this category focuses on aligning commentaries with
observed actions in Robocup football games, a task introduced by Chen &
Mooney (2008). The input data concerns a list of natural language utterances of
limited morpho-syntactic complexity, each paired with a number of candidate
meaning representations. The correct meaning representation for an utterance
always consists in a single predicate. The task is then to learn a productive gram-
mar that can map between utterances and their meaning representation. Along
with the task and corpus, Chen & Mooney (2008) also present a method to induce
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probabilistic synchronous context-free grammars that can effectively be used for
semantic parsing and meaning-driven language production. Gaspers et al. (2011)
make use of the same task and corpus to develop and evaluate a method to
learn construction grammars without strict supervision. In a first phase, a prob-
abilistic lexicon is learned using a cross-situational learning algorithm (Fazly
et al. 2010). The lexicon is restricted to sequences of one or two tokens, paired
with one predicate or argument that occurs in the corpus. In a second phase,
schemata are computed as generalisations over co-occurring lexical items and
predicates or arguments. In particular, lexical items appearing in the same syntac-
tic environments are grouped into semantic equivalence classes. Then, schemata
are constructed by substituting the lexical items with abstract labels associated to
their respective semantic equivalence class. Gaspers & Cimiano (2012, 2014) and
Gaspers et al. (2016) present variations on this model, where the level of segmen-
tation of the input is reduced from tokens through graphemes to phonemes.
Introducing the framework of Meaningful Unsupervised Data Oriented Pars-
ing (p-DOP), Beekhuizen & Bod (2014) present a model that incrementally learns
mappings between nodes in binary trees and meaning representations expressed
in predicate logic. The task that the model aims to solve is to find the correct
predicate-argument structure for a given utterance in referentially ambiguous
scenes. They apply the model to artificial data that is not fully compositional on
the meaning side, including for example idioms. At the start of an experiment,
the construction inventory is empty. When presented with a new utterance, the
model first attempts to apply any existing constructions. In order to induce syn-
tactic structures, the model first generates all possible binary trees for a given
utterance. Similarly, on the meaning side, the model decomposes the meaning
predicates into all possible decompositions. The arguments are replaced by slot
indices. For example WATCH(EL, E2) can be further decomposed into p(1, E2) and
p: wATCH. All unanalysed nodes in the binary trees are then paired with all pos-
sible decompositions of parts of the semantic representation as candidate form-
meaning pairs. These are then combined with the possible binary tree analyses
to form a hypothesis space of possible analyses. As a last step, the model pro-
ceeds to extract all subtrees, and compares them to previously observed subtrees.
If a subtree is found in multiple utterances’ parse trees, then its prior probabil-
ity of being a valid constituent increases. Non-compositional parts are retained
by only allowing further decomposition at nodes where a meaning representa-
tion is present. In both parsing and production, the derivation with the high-
est joint prior probability is selected, which in practice means that hypotheses
with a smaller amount of subtrees are preferred. As a further evolution of this
work, Beekhuizen et al. (2014) and Beekhuizen (2015) introduce the Syntagmatic-
Paradigmatic Learner (SPL), which addresses a number of desiderata inspired by
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usage-based theories of language acquisition. As such, the generation of possible
analyses, called derivations, is driven by a set of general structure-building opera-
tions, implementing parts-to-whole learning strategies. These operations allow for
the concatenation of derivations, slot filling, syntactic bootstrapping, and ignor-
ing words. The model is now applied to artificial data that is generated based on
empirical research on noise, uncertainty, and situational continuation in child-
directed communicative interactions.

Kwiatkowski et al. (2012) and Abend et al. (2017) introduce a probabilistic
learning algorithm for combinatory categorial grammars (CCG), designed to
model the human language acquisition process. This approach differs from earlier
work by Kwiatkowski et al. (2010), presented in Section 3.2, in a few key aspects.
An evident difference is that this model learns from utterance-situation pairs
under propositional uncertainty, rather than having a single gold standard seman-
tic representation for each utterance. A second difference is that the model is able
to learn the lexicon, and the mapping between the lexicon and predefined cate-
gories from scratch, rather than relying on a list of noun phrases. An important
assumption in this line of work is that a language-independent set of combinatory
rules is provided to the model. The grammar is evaluated both quantitatively and
qualitatively using the Eve corpus (Brown 1973), which was enriched with deter-
ministically mapped logical forms based on dependency tree annotations.

3.4 Learning a grammar from a situation model

The final category of models addresses the task of learning a construction gram-
mar from utterances observed during communicative interactions. As such, the
meaning representation of the utterances is not provided, but needs to be abduc-
tively inferred from the situation in which the interaction takes place.

Steels (2004) presents an initial experiment in which a population of artificial
agents bootstrap argument structure constructions and grammatical categories
from visually grounded meaning representations. The paper presents a description
game, in which two agents from the population observe a scene that needs to be
successfully described by one agent to the other. The scene is transcribed in terms
of first order logic predicates. During the conceptualisation phase, the speaker
agent decides on the ‘event profile’ that they want to express (see, e.g., Croft 1998),
i.e., deciding which roles have to be expressed linguistically. Whether speaking or
listening, an agent first makes use of its own construction grammar to process the
conceptualised meaning representation or observed utterance. When an agent fails
to formulate an utterance that expresses the conceptualised meaning representa-
tion or fails to comprehend an observed utterance in terms of the current scene, a
game fails and a learning event takes place. When a game succeeds, the score of an
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agent’s applied constructions is increased, while the score of competing construc-
tions is decreased. Upon failure, the scores of the constructions that were used are
decreased. Overall, the presented methodology shows how hierarchical semantic
and syntactic categories can be learnt, and how the emergence of syntax aids to
resolve ambiguity. van Trijp (2008, 2016) presents an extensive suite of follow-up
experiments and shows how abstract semantic roles can emerge and evolve in pop-
ulations of autonomous agents through multi-level selection strategies.

Artzi & Zettlemoyer (2013) present a model where a seed lexicon, a prede-
fined set of combinatory rules and a situation model are provided. The seed lex-
icon and combinatory rules are used to generate hypotheses about the meaning
underlying observed utterances, which can subsequently be validated against the
situation model. The goal is to extend the seed lexicon with new items in order to
solve a navigation task.

Spranger & Steels (2015) and Spranger (2015, 2017) present a model of the
acquisition of spatial language in embodied artificial agents. In a shared environ-
ment and through a tutor-learner language game, two agents interact with 15 dif-
ferent objects in over 1000 different spatial scenes. The goal is to simultaneously
acquire the semantic and syntactic aspects of spatial language. Each communica-
tive interaction proceeds as follows. The tutor agent formulates an utterance that
uniquely refers to an object in the situational context. The learner agent compre-
hends and interprets the utterance with respect to the scene and points to the
object that results from the interpretation process. Then, feedback is provided by
the tutor in the form of pointing. If the learner agent misinterpreted the observed
utterance, it needs to make a hypothesis about the intended meaning of the utter-
ance. The agent does this by composing a procedural semantic network based on
a set of cognitive operations that it can perform. The observed form and hypoth-
esised meaning can then be stored in the form of a holophrastic construction.
Later, the agent can generalise over the constructions it knows and thereby con-
struct more abstract constructions. The semantic classes of the slots in the more
abstract constructions are predefined in an ontology that the learner can access.

Nevens et al. (2022) build further on the composition processes introduced
by Spranger & Steels (2015) and the syntactico-semantic generalisation operators
introduced by Doumen et al. (2023). They tackle the visual question answering
benchmark introduced by Johnson et al. (2017) and are able to bootstrap a con-
struction grammar that maps between English questions and visually grounded
queries without ever having observed the queries. Through lateral inhibition
alignment dynamics, generally applicable constructions become gradually more
entrenched, while suboptimal constructions, i.e., constructions that do not gener-
alise to other scenes, for example due to suboptimal hypotheses about the intended
meaning of an observed utterance, gradually disappear from the grammar.
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4. Discussion

The low-level review of the prior literature in the previous section reveals perhaps
most clearly that existing models for computationally learning construction gram-
mars are highly diverse in nature and therefore challenging to compare. Their
diversity is situated on almost any level, from the task that is tackled, to the goals
that are envisioned, the datasets that are used, the approaches that are taken and
the methodologies that are applied. So, where are we at now and where should we
be heading?

Answering these questions presupposes that a particular perspective is taken.
After all, researchers in natural language processing, for example, have different
immediate goals and concerns than researchers in cognitive science or language
pedagogy. We will be addressing these questions from a constructionist perspec-
tive, with the general goal in mind of operationalising large-scale, usage-based
construction grammar. So, what does it mean to operationalise usage-based con-
struction grammar on a large scale? We define the term operational as having
a computational implementation that supports the processes of language com-
prehension (i.e., mapping from an utterance to a representation of its meaning)
and production (i.e., mapping from a meaning representation to an utterance
that expresses it). The term large-scale can be interpreted as having a broad and
domain-general coverage of the language. For the term usage-based, we adhere to
Bybee’s (2006) view that an individual’s grammar is rooted in and shaped by the
individual’s history of communicative interactions. Finally, we interpret the term
construction grammar as adhering to the basic principles underlying construc-
tionist approaches to language (Goldberg 2003). These principles are summarised
by van Trijp et al. (2022) as follows: (i) all linguistic knowledge is captured in the
form of constructions, i.e., form-meaning pairings, (ii) there is no strict distinc-
tion between words and grammar rules, so that non-compositional aspects of the
language can elegantly be captured, (iii) constructions cut across the different lev-
els of linguistic analysis, and (iv) construction grammars are learnt, dynamic sys-
tems.

An important insight gained through the literature review is that prior models
typically score well on one or two of these dimensions, while suffering from sub-
stantial shortcomings on the others. As such, the models that address the large-
scale dimension of the challenge, i.e., those by Dunn (2017, 2018, 2019, 2022, 2023),
Dunn & Tayyar Madabushi (2021) and Marti et al. (2021), do not yield individ-
ual grammars that support language comprehension and production. The scale of
other models is restricted in one of three ways. Some models cover specific lin-
guistic phenomena only, such as basic argument structure (Steels 2004; Dominey
20052, 2005b, 2006; Dominey & Boucher 2005; van Trijp 2008, 2016; Garcia
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Casademont & Steels 2015, 2016; Garcia Casademont 2018), aspectual marking
(Gerasymova & Spranger 2010, 2012), agreement marking (Beuls et al. 2010) or
spatial relations (Spranger & Steels 2015; Spranger 2015, 2017). Other models are
applied to narrow artificial datasets, such as Robocup (Chen & Mooney 2008;
Gaspers et al. 2011; Gaspers & Cimiano 2012, 2014; Gaspers et al. 2016), Geo-
Query (Kwiatkowski et al. 2010, 2011), CLEVR (Nevens et al. 2022; Doumen et al.
2023), ATIS (Kwiatkowski et al. 2011), Navi (Artzi & Zettlemoyer 2013), or other
datasets specifically generated for evaluating the model (Beekhuizen & Bod 2014;
Beekhuizen et al. 2014; Beekhuizen 2015). A final set of models makes use of small-
scale corpora of transcribed children’s speech (Alishahi & Stevenson 2008; Chang
2008; Kwiatkowski et al. 2012; Abend et al. 2017). The large-scale operationalisa-
tion of construction grammar learning thereby remains an open challenge.
When it comes to the usage-based nature of the models, we can define a
broad spectrum of possible approaches. On the most usage-based side of the spec-
trum, we would expect to find models that learn individual construction gram-
mars from empirically observed communicative interactions, without access to
a segmentation of the utterances, their meaning representations, or any prede-
fined categories or lexical items. No models that satisfy all of these criteria were
found in the literature. In fact, all prior models learn from utterances that are
segmented on some level (phonemes, graphemes or words). Existing models that
learn individual grammars without any access to annotated meaning representa-
tions are always learnt based on artificial utterances (Nevens et al. 2022), some-
times in combination with a predefined lexicon and system of categories (Artzi &
Zettlemoyer 2013; Spranger & Steels 2015; Spranger 2015, 2017). Other models that
do not have access to exact meaning representations do have access to a super-
set of the meaning representations. These models learn from artificial utterances
(Beekhuizen & Bod 2014; Beekhuizen et al. 2014; Beekhuizen 2015) or short nat-
ural utterances (Chen & Mooney 2008; Gaspers et al. 2011; Gaspers & Cimiano
2012, 2014; Gaspers et al. 2016), sometimes in combination with a set of prede-
fined combinatory rules (Kwiatkowski et al. 2012; Abend et al. 2017). Next, we
find a class of models that learn from semantically annotated utterances. Some
of these models learn construction grammars based on artificial data (Doumen
etal. 2023), almost always augmented with a pre-defined lexicon (Steels 2004;
van Trijp 2008, 2016; Garcia Casademont & Steels 2015, 2016; Garcia Casademont
2018), pre-categorised lexical items (Dominey 2005a, 2005b, 2006; Dominey &
Boucher 2005; Beuls et al. 2010; Gerasymova & Spranger 2010, 2012) or a pre-
defined set of categories and combinatory rules (Kwiatkowski et al. 2010). Other
models in this class learn from natural data augmented with pre-categorised lex-
ical items (Alishahi & Stevenson 2008; Chang 2008) or a predefined set of cat-
egories and combinatory rules (Kwiatkowski et al. 2011). A final class of models
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learns from natural data enhanced with morpho-syntactic and semantic annota-
tion layers (Dunn 2017, 2018, 2019, 2022, 2023; Dunn & Tayyar Madabushi 2021;
Marti et al. 2021). However, these models do not yield grammars that support lan-
guage comprehension and production.

The third dimension concerns the degree to which the models adhere to the
basic tenets of construction grammar. Fully constructionist approaches should
support bi-directional language processing. They should capture all linguistic
knowledge in the form of form-meaning pairings, allow for meaningful schemata
above the word level, allow for combining information from different levels of lin-
guistic analysis, and support incremental, individual and adaptive learning. On
the most constructionist side of this spectrum, we find approaches that explicitly
make use of computational construction grammar implementations to represent
and process linguistic structures. Models adopting Fluid Construction Grammar
(Steels 2004; van Trijp 2008, 2016; Beuls et al. 2010; Gerasymova & Spranger
2010, 2012; Spranger & Steels 2015; Spranger 2015, 2017; Garcia Casademont &
Steels 2015, 2016; Garcia Casademont 2018; Nevens et al. 2022; Doumen et al.
2023) faithfully adhere to the basic tenets of construction grammar. Models adopt-
ing p-DOP (Beekhuizen & Bod 2014; Beekhuizen et al. 2014; Beekhuizen 2015)
capture form-meaning pairings beyond the level of individual words and support
language comprehension and production, but are inherently word order-based.
Alishahi & Stevenson (2008), Gaspers et al. (2011, 2016), and Gaspers & Cimiano
(2012, 2014) introduce computational operationalisations of construction gram-
mar that are specific for the purposes of the models they describe. In essence,
these operationalisations adhere to the basic principles of construction grammar,
but they have only been operationalised for basic word order-based argument
structure patterns. Models adopting Embodied Construction Grammar (Chang
2008) are constructionist in nature but only support language processing in the
comprehension direction. Finally, in the case of models based on Dynamic Con-
struction Grammar (Dominey 2005a, 2005b, 2006; Dominey & Boucher 2005),
it is difficult to tell to what extent they capture form-meaning pairings of varying
degrees of abstraction, in particular when it comes to modelling phenomena that
do not depend on sequential word order. A second class of models makes use
of generative grammar formalisms and thereby assumes that the meaning of lin-
guistic expressions mirrors the compositional structure of their syntactic analy-
sis. These models make use of Combinatory Categorial Grammar (Kwiatkowski
et al. 2010, 2011, 2012; Artzi & Zettlemoyer 2013; Abend et al. 2017) or probabilistic
context-free grammar (Chen & Mooney 2008) as the underlying linguistic frame-
work. Finally, the models by Dunn (2017, 2018, 2019, 2022, 2023), Marti et al.
(2021), and Dunn & Tayyar Madabushi (2021) capture partially abstract word
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order patterns rather than form-meaning pairings. The slots in these patterns are
characterised by either morpho-syntactic or semantic categories.

The final dimension of interest concerns the operationality of the resulting
grammars. While all models included in this paper are operational in the sense
that they have been computationally implemented, not all of them yield gram-
mars that support language comprehension and production. In particular, the
models based on ECG (Chang 2008) and CCG (Kwiatkowski et al. 2010, 2011,
2012; Artzi & Zettlemoyer 2013; Abend et al. 2017) only support language compre-
hension. The models by Dunn (2017, 2018, 2019, 2022, 2023), Marti et al. (2021),
and Dunn & Tayyar Madabushi (2021) support neither language comprehension
nor production.

A related strand of research that is worth mentioning but falls outside the
scope of this paper as defined by the inclusion criteria concerns recent cross-overs
between construction grammar and large language models (LLMs). While these
approaches share the idea that grammatical patterns can carry non-compositional
meaning, they do not (aim to) provide a model for learning construction gram-
mars. As such, Tayyar Madabushi et al. (2020) introduce a methodology for fine-
tuning LLMs with the goal of distinguishing between instances of different
constructions and Weissweiler etal. (2022, 2023) investigate through probing
studies inhowfar LLMs capture constructional form and meaning. For an
overview of work on the intersection of construction grammar and LLMs, we
refer the interested reader to Tayyar Madabushi et al. (2025).

From the synthesis presented in this section, we can conclude that almost
all challenges involved in computationally learning large-scale, usage-based con-
struction grammars have been addressed in some form in prior research, but
that no comprehensive models exist to date. So, what would the ultimate model
look like and how can we get there? We hereby put forward a number of mile-
stones that will hopefully serve as a roadmap that can boost and streamline future
research efforts.

Representing meaning

Human languages are constructed by children through interactions with their
caregivers. These interactions are meaningful, intentional and situationally
grounded. Faithful models of usage-based language acquisition should therefore
not rely on direct access to the meaning representations of observed utterances,
but implement the process of constructing hypotheses about the intended mean-
ing of the utterances based on the situational context in which they are observed.
This entails that the meaning representations need to be composable based on
an inventory of pre-linguistic or previously acquired cognitive operations, and
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be evaluable with respect to a situational context. This process is referred to as
intention reading in the psycholinguistic literature (Tomasello 2003). Initial com-
putational operationalisations of this process have been provided by, amongst
others, Spranger et al. (2012), Pauw (2013), and Nevens et al. (2022). Semantically
annotated corpora are definitely necessary as a scaffold towards the development
of large-scale models of construction grammar learning, but cannot be the end
point. After all, it is impossible to define, and therefore annotate, meaning inde-
pendently of contextualised communicative intentions. Ideally, yet probably too
ambitious for the short term, the intention reading process should be oper-
ationalised using empirically motivated primitive cognitive operations in real-
world situations. This will require substantial research efforts into better
understanding the building blocks of human cognition, and substantial invest-
ments in the development of environments that faithfully simulate the conditions
under which human language are acquired, e.g., through the use of virtual reality.

Representing form

The ultimate model represents utterances in their natural form, i.e., as unseg-
mented sound waves along with data streams that capture information from other
modalities, including eye gaze, facial expression and gesture. This sharply con-
trasts with how form is handled in current models, where all forms are repre-
sented as segmented strings of words, graphemes or phonemes. On the one hand,
this entails that the learning of grammars is limited by segmentation choices
that have been made upfront and independently of the learning process. On the
other hand, these representations leave aside a wealth of potentially meaningful
information, for example conveyed through prosody or posture. One important
innovation in this direction would be to design algorithms that are able to com-
pare and generalise over unsegmented speech signals on the utterance level. The
design of such algorithms could start from prior work on the cross-situational
learning of auditory vocabularies from semantically grounded speech data (ten
Bosch etal. 2009; Ons et al. 2014; Renkens & Van hamme 2017; Wang & Van
hamme 2022) and extend the techniques that are used, so that they can identify
patterns above the word level.

Representing constructions

The ultimate model captures all linguistic knowledge that a language user needs
to comprehend and formulate utterances in the form of acquired form-meaning
mappings (constructions). This means that no grammar rules, system of cate-
gories, or other linguistic structures are predefined. The model can only rely on
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general strategies to construct form-meaning mappings, combine them, and gen-
eralise over them. The grammar should be able to capture form-meaning map-
pings of varying degrees of abstraction, so that meaning representations that do
not mirror the compositionality of the morpho-syntactic structures that express
them can also be modelled. The processing engine that performs construction-
based language comprehension and production should be able to combine the
information captured in large numbers of constructions, so that morpho-
syntactically and/or semantically complex utterances can be handled. Indeed,
such utterances typically instantiate a wide variety of constructions. Finally, con-
structions should be able to incorporate sequential word order patterns, agree-
ment patterns or a combination of both. It is therefore important to use a
framework that strongly adheres to these basic principles of construction gram-
mar, such as Fluid Construction Grammar (Steels 2004; van Trijp et al. 2022;
Beuls & Van Eecke 2023, 2025).

Learning constructions

If the input to the language learning process consists of situationally grounded,
unsegmented, multi-modal observations of utterances, the first constructions that
are learnt can only be holistic pairings between observed utterances and hypothe-
ses about their intended meaning (Tomasello 2003). More general constructions
can later be distilled as generalisations over both the form and meaning sides of
previously acquired constructions with respect to novel observations. This gen-
eralisation process requires access to general syntactico-semantic generalisation
algorithms. Initial prototypes of such algorithms have been presented by Van
Eecke (2018), Nevens et al. (2022), and Doumen et al. (2023). Apart from improv-
ing these algorithms to learn more modular grammars that can, for example, ele-
gantly handle recursive patterns, a crucial target in this direction concerns the
design of algorithms that can learn agreement relations on an abstract level, i.e.,
by expressing congruence without referring to specific categories. Initial efforts
in this direction have been presented by Beuls & Hofer (2011), van Trijp & Steels
(2012), and Beuls & Steels (2013).

Language-independent learning

Most prior experiments focus on learning construction grammars based on Eng-
lish data. As a consequence, the resulting models primarily focus on constructions
that map between word-order patterns and the meaning they convey. Aspects
of meaning expressed through morphology or agreement marking are often not
included in the models. While this approach might work for English to a certain
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extent, it does not generalise to morphology-rich languages, where much of the
function of word order might be taken up by marking strategies. It is important
to develop learning mechanisms that are applicable to any language, both from a
theoretical and from a practical perspective. Theoretically, it would confirm the
constructionist idea that all languages can be modelled through constructions.
Practically, it would facilitate the development of construction-based language
technology applications for a wide variety of languages.

Scaling up

A final, more general, criterion concerns the scale of the experiments. As the
goal is to learn linguistic capacities from scratch in a human-like manner, it is
unavoidable that the language learning process will need to start in very concrete,
fully grounded, domain-specific environments. As increasingly more construc-
tions with increasingly higher degrees of abstraction are learnt, the tasks and envi-
ronments can gradually become more complex, abstract and domain-general. It is
important to keep in mind that the ultimate model learns in an incremental fash-
ion, generalises over domains and tasks, and remains forever adaptive to changes
in the tasks and environments. While it is natural, and even necessary, to focus
on specific parts of the challenge, it is crucial to keep in mind that one day these
individual experiments will need to come together.

5. Conclusion

The aim of this paper was to provide an overview of prior work concerning com-
putational models of construction grammar learning, to identify gaps in the state
of the art and to propose a perspective on the future of the field. We have first
described and compared a wide variety of existing models and have then syn-
thesised the state of the art with a special focus on the aim of operationalising
usage-based construction grammar on a large scale. Finally, we have formulated
a number of milestones that can serve as a roadmap towards the development
of scalable, language-independent and adaptive techniques for learning construc-
tion grammars in a usage-based fashion.

We have argued that a comprehensive model of construction grammar learn-
ing should learn from meaningful, intentional and situationally grounded com-
municative interactions. As such, meaning representations need to be actively
constructed based on the situational context. Form representations should be free
from preprocessing artefacts and should not neglect multi-modal information.
Bidirectional construction grammars should emerge as a result of applying general
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learning strategies and they should cover the full range of linguistic phenomena
that occur in the world’s languages. We sincerely hope that our synthesis of prior
literature and prospective roadmap can help to boost progress in this area of
research, streamline efforts undertaken in different research traditions, and bring
us closer to language technologies that can learn to use language in a truly natural,
human-like manner.
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