Constructions at Work!
Visualising Linguistic Pathways for
Computational Construction Grammar

Sébastien Hoorens # Katrien Beuls # Paul Van Eecke 2P

& Artificial Intelligence Lab, VUB, Pleinlaan 2, 1050 Brussels, Belgium

b Sony Computer Science Laboratories, 6, Rue Amyot, 75005 Paris, France

Abstract

Computational construction grammar combines well-known concepts from artificial intelli-
gence, linguistics and computer science into fully operational language processing models.
These models allow to map an utterance to its meaning representation (comprehension),
as well as to map a meaning representation to an utterance (formulation). The processing
machinery is based on the unification of usage-patterns that combine morpho-syntactic
and semantic information (constructions) with intermediate structures that contain all in-
formation that is known at a certain point in processing (transient structures). Language
processing is then implemented as a search process, which searches for a sequence of con-
structions (a linguistic pathway) that successfully transforms an initial transient structure
containing the input into a transient structure that qualifies as a goal. For larger gram-
mars, these linguistic pathways become increasingly more complex, which makes them
difficult to interpret and debug for the human researcher. In order to accommodate this
problem, we present a novel approach to visualising the outcome of constructional lan-
guage processing. The linguistic pathways are visualised as graphs featuring the applied
constructions, why they could apply, with which bindings, and what information they have
added. The visualisation tool is concretely implemented for Fluid Construction Grammar,
but is also of interest to other flavours of computational construction grammar, as well as
more generally to other unification-based search problems of high complexity.

1 Introduction

A crucial first step in natural language understanding and production is the implementation
of a system that can reliably map between an utterance and its meaning representation. The
utterance is used for transferring a meaning representation from one human or artificial agent
to another, and the meaning representation is used for interpreting the utterance in a given
grounded or textual context [17]. Computational construction grammar is a field of study that
aims to tackle this challenge by combining insights from linguistics, artificial intelligence and
computer science into fully operational, bidirectional language processing models. Linguisti-
cally, the models are inspired by the basic principles of construction grammar [4, 5, 7, 3, 6], in
particular the tight integration of syntax and semantics, the lexicon-grammar continuum and
the use of multiple perspectives, such as phrase structure, functional structure, case structure
and information structure. From artificial intelligence and computer science, the models borrow
core concepts, such as problem solving through search [11, 12] and the unification of feature
structure representations [13, 14, 10].

Computational construction grammars implement language processing as a search process,
with operators, called constructions, expanding intermediate structures until a solution is found.
For larger grammars, these intermediate structapps can easily consist of “dozens of units and
hundreds of features” [19]. Each intermediate structure has been shaped by a whole range of

constructions of different types, each construction contributing units or features to the analysis.
As constructions fit together like the pieces of a puzzle, it often happens that certain precon-
ditions of a construction have been contributed by one earlier construction, and others by a
different one. Such constructional dependencies can be hard to grasp, yet it is important that
they are correctly captured by the grammar engineer.

In order to enhance the human readability of computational construction grammar analyses,
we introduce a tool that clearly visualises the processing results as a graph, featuring the applied
constructions, why they could apply, with which bindings, and what information they have
contributed. The tool is designed to help grammar engineers develop and debug grammars, as
well as to help regular users inspect and interpret the results of a computational construction
grammar analysis. In this way, the tool will help to address one of the biggest challenges faced
by computational construction grammars, namely scaling up for attaining larger coverage.

There are multiple computational construction grammar implementations available, of which
Embodied Construction Grammar (ECG) [2, 1] and Fluid Construction Grammar (FCG) [15, 16]
are the most advanced projects. Our visualisation tool has concretely been implemented for
Fluid Construction Grammar, but the proposed visualisations should be easily transferable to
other computational construction grammar implementations and can also be applied to other
unification-based search problems of high complexity. This generality is demonstrated in this
paper by applying the tool to a planning problem.

The paper is structured as follows. First, we introduce the necessary basics of bidirectional
language processing in Fluid Construction Grammar. Then, we present the design and imple-
mentation of the visualisation tool and demonstrate the tool in a use case. Finally, we show that
the tool can also be used to visualise other problems than language processing, by demonstrating
its application to a planning problem. The paper is supported by an interactive web demonstra-
tion, which can be accessed via https://www.fcg-net.org/demos/visualising-pathways.

2 Bidirectional Language Processing using FCG

2.1 Language Processing as a Problem Solving Process

Fluid Construction Grammar (FCG, https://www.fcg-net.org, [15, 16]) is an open-source
computational construction grammar formalism and implementation, designed for mapping
between utterances and their meaning representation. It is a bidirectional formalism in the
sense that it uses the same grammar and processing mechanisms for both comprehension, i.e.
mapping from a form to a meaning representation, and formulation, i.e. mapping from a
meaning representation to a form. FCG implements language processing as a problem solving
process [18], consisting of the following main components:

e Transient Structures. Transient structures are the state representations in the search prob-
lem. A transient structure is a feature structure that contains all information (morpho-
syntactic, semantic, pragmatic, ...) that is known at a certain point in processing.

e Initial Transient Structure. The initial transient structure is the root of the search problem
and is computed directly from the input. In comprehension, the initial transient structure
contains a representation of the strings in the input and of the internal ordering between
the strings. In formulation, the initial transient structure contains the predicates of the
meaning representation that needs to be formulated.

e Constructions. Constructions are the operators in the search problem. A construction can
apply to a transient structure if it matches it, i.e. if there are no conflicts when unifying
the conditional part of the construction with the transient structure. If the construction
matches the transient structure, it can expand the transient structure by merging the
information from its contributing part into it.

e (oal Tests. Goal tests compute whether a given transient structure qualifies as a solution.

The task of the FCG system is to find a sequ2dge of constructions that can expand the ini-
tial transient structure into a transient structure that qualifies as a goal. This sequence of

cxn cxn cxn cxn

@y @y @ @) g, n o B o 2 cxn-inventory
Goal test: failed Goal test: failed
. Transient- i %Xp . Transient- :
HL :
: structurey, ¢ | > structurey, 5 |
oxn; ,7:.. . . .
Goal test: failed -7 Goal test: failed
t'”",”"'t ¢ %Mm o Transient- |
rasient- -------- > .
R . structure, :
i structure | : =3
S~o R Goal test: failed Goal test: failed Goal test: succeeded
CXNg T W .- (;’ (a
! Transient- : 'k Transient- : M T H”?|t
: mmmmmm- > mmmmmm- > ransien
. structure. : . structure. : . H
: t+4 : 5 . Structure

Figure 1: FCG implements language processing as a search process, in which constructions
(cxns for short) expand an initial transient structure until a solution is found. A sequence of
construction applications that leads to a solution is called a linguistic pathway.

construction applications is called a linguistic pathway. In order to make the search process
computationally feasible, different heuristics and optimization strategies are used, which fall
however outside the scope of this paper. A schematic representation of how FCG imple-
ments language processing as a problem solving process is shown in Figure 1. For study-
ing FCG in more detail, we recommend playing around with the interactive web service at
https://www.fcg-net.org/fcg-interactive.

2.2 Bidirectional Constructions

Constructions are, linguistically speaking, usage-patterns that combine morpho-syntactic and
pragmato-semantic information. Constructions can be very concrete, for example in the case
of morphological and lexical constructions, but can also be more abstract, for example in the
case of argument structure constructions. Computationally speaking, constructions are feature
structures which always have the same basic design, as exemplified in Figure 2. Constructions
consist of a contributing part, left of the arrow, and a conditional part, right of the arrow. The
conditional part consists of 1 or more units, and the contributing part of 0 or more. The units
on the conditional part of a construction each consist of two parts, separated by a horizontal
line. The upper part is called the formulation lock and the lower part the comprehension lock.
When the construction is used in comprehension, the comprehension lock of the units on the
conditional part will be matched with the units of the transient structure. Matching is a subset
unification process, which checks whether the conditions stated in the locks are compatible with
the transient structure. If matching succeeds, the rest of the construction, i.e. the formulation
lock and the contributing part, will be merged into the construction. Merging is an other
unification process, which, in addition to matching, adds features from the construction that
do not yet occur in the transient structure to the transient structure. When the construction is
used in formulation, it will be the formulation locks that are matched and the comprehension
locks and contributing part that will be merged. The active locks, i.e. the comprehension
locks in comprehension and the formulation locks in formulation, can thus be thought of as
the preconditions of the construction, and the non-active locks and the contributing part as
postconditions. The fact that the construction is structured into this lock system, facilitates an
efficient implementation of bidirectional language processing.

An example construction is shown in Figure 2. The conditional part of this determinednoun-
cxn consists of three units and the contributing part of one unit. Conventionally, (logic) variables
are preceded by a question mark. In comprehension as well as in formulation, this construction
adds a noun to an existing noun phrase unit, with the additional constraint that the noun needs

determinednoun-cxn (determiner-operators 0.50) show attributes

?modifier
referent: ?ref
args: [?arg1, ?arg2]
parent: ?np
parent: ?np
syn-cat:
agreement: ?agr \ Formulation
\
?noun \ Lock
parent: ?np
referent: ?ref /
args: [?arg2, ?arg3]
sem-cat:
Py sem-class: identifier
. ?np 0)
Contributor e— — < parent: ?np
subunits: {?noun} |€
syn-cat:
categories: {noun} haN|)
agreement: ?agr Comprehension
/
np / Lock
subunits: {?modifier} j
referent: ?the-referent
sem-cat:
sem-function: referring-expression
form: {meets(?modifier, ?noun, ?np)}
subunits: {?modifier}
syn-cat:
phrase-type: np
agreement: ?agr

Figure 2: A determinednoun-cxn with labels highlighting its comprehension lock, formulation
lock and contributor.

to be right adjacent to a modifier that is already part of the noun phrase.

2.3 Constructional Dependencies

For more complex grammars and inputs, the number of applied constructions, units and features
can become quite large. Structures containing a thousand features over sixty units, contributed
by a hundred constructions are no exception. These large structures are difficult to debug and
interpret and it is highly non-trivial to tell why a construction could apply, i.e. which previous
constructions contributed the necessary features that satisfy the locks of the construction.
Moreover, from a linguistic point of view, the construction application process is often more
informative than the final transient structure, as it reveals which constructions have applied
with which inputs and outputs.

At this moment, FCG’s standard visualisation system [8] visualises the construction appli-
cation process as a tree structure, drawing one node for each construction application. Each
node shows the transient structure before construction application, the construction itself, and
the transient structure after construction application, as well as the bindings from matching.
This standard visualisation is shown in Figure 4 for the input utterance the cat, as analysed by
the Basic English Grammar [20]. The tree structure is linear here, as the comprehension process
did not require any search. Each green box represents the application of a construction, and
contains the transient structure after the application of that construction. The figure should
be read from left to right, and shows how the transient structure is gradually build up. For
space reasons, the transient structure before construction application, the construction itself,
the matching bindings and the features inside the units are collapsed here, but they can be
explored in full detail in the web demonstration supporting this paper.

Although the standard visualisation has proven its worth in grammar engineering for over a
decade now, it does not provide insight in the comlz)lex puzzle of constructional dependencies. It
does not transparently display which earlier cor12s20ructions have provided the necessary features

that satisfy the lock of a later construction. An earlier effort at integrating the idea of con-
struction networks into FCG focused mainly on their benefits in optimizing the search space,
rather than visualising the constructional dependencies as such [22, 21]. The new visualisation
that is proposed in our paper specifically tackles the problem of visualising linguistic pathways
with a special focus on these dependencies.

3 Visualising Linguistic Pathways

The main asset of the new visualisation is that it gives insight into how a solution, in this
case a certain feature structure that resulted from the construction application process, came
into being. To explain the specifics of the new visualisation, we work again with the exam-
ple utterance the cat. We comprehend the utterance using the Basic English Grammar [20].
The initial transient structure consists only of the input strings and word order information.
Then the search process begins, and six constructions apply, gradually extending the transient
structure. These constructions are the the-cxn, the cat-noun-morph-cxn, the cat-noun-lex-cxn,
the determiner-operation-cxn, the determined-noun-cxn and the singular-cxn. The final transient
structure is shown in Figure 3 and the standard visualisation of the application process of the
six constructions in Figure 4.

The final transient structure contains three units: an NP unit and two lexical units as its
children. The highlighted text in the figure shows certain variable equalities (e.g. referent) and
important features such as agreement, whose value is the same in all three units. These features
have been contributed by the six different constructions, and certain constructions could only
apply after a combination of other construction had contributed the necessary features. How
these constructions depend on each other to build the transient structure that we see here, is
exactly what our tool visualises.

This section first explains the design of the visualisation tool (3.1) and then discusses how
it has been integrated into Fluid construction Grammar (3.2).

3.1 Design

The graph in Figure 5 shows the constructional dependencies between the six constructions
that were active in the analysis of the example utterance the cat. It consists of three main
components:

1. Constructions are represented as rectangular, blue node clusters. In each node cluster,
the name of the construction is shown at the top in white text on a blue background
(e.g. determinednoun-cxn). The clusters are laid out from left to right, in their order of
application. Constructions more to the left are responsible for earlier expansions of the
transient structure.

2. Units of constructions make up the nodes of the graph and are shown as rectangular boxes
within the constructions. These boxes contain the names of the units (e.g. ?definite-article
or ?modifier). The unit names are variables that are bound to units in the transient struc-
ture during construction application. When building up the transient structure shown
in Figure 3 for instance, ?definite-article, ?determiner and ?modifier will all be bound to
the-179. 7cat-unit and ?noun will be bound to cat-45 and ?np will be bound to np-828.
Units of constructions can have a white or a green background. White units were already
present in the transient structure before the construction had applied, and were thus
added by an earlier construction application. Green units are added by the construction
during its application.

3. Constructional dependencies are represented by labelled edges between units. The direc-
tion of the edges follows a chronological order: the construction of the unit at the source
applied before the construction of the unit at the target. Hence, the unit at the target
(usually) depends on information from the unit at the source. The labels on the edges
contain conditional information that was $#8sent in the target construction’s formulation

transient structure

the-179
sem-cat:
sem-class: selector
lex-id: the
form: {string(the-179, "the")}
meaning: {referent-status(identifiable-ref, ?ref-638, ?r-638)}
| syn-cat:
definite: +
agreement: [-, -, +, -]
categories: {article, determiner}
sem-cat: args: [?ref-638, ?r-638]
sem-function: referring-expression parent: hp-828
O | referent: 2ref-638 referent: ?ref-638
form: {meets(the-179, cat-45, hp-828)}
syn-cat: cat-45
phrase-type: np meaning: {object(cat, ?r-638, ?x-3920, ?ref-638),
agreement: [-, -, +, -] number-value(singular, ?r-638)}
subunits: {the-179, cat-45} form: {string(cat-45, "cat")}
lex-id: cat
referent: ?ref-638
| sem-cat:
sem-class: identifier
parent: hp-828
syn-cat:
agreement: |-, -, +, -]
categories: {common-noun, noun}
args: [?r-638, ?x-3920]

Figure 3: Resulting transient structure after comprehending the cat. Six different constructions
have shaped this transient structure: the the-cxn, the cat-noun-morph-cxn, the cat-noun-lex-cxn,
the determiner-operation-cxn, and the determined-noun-cxn.

229

2, 3.80: cat-noun-morph 4, 7.71: determiner-operation-cxn 5, 14.94: determinednoun-cxn 6, 22.51: singular-cxn

cxn-applied cxn-applied cxn-applied cxn-applied succeeded, cxn-applied

transient structure transient structure transient structure transient structure transient structure

Figure 4: The construction application process for the utterance a cat using the Basic English Grammar [20], as visualised by FCG’s standard visualisation
library. The green boxes show how the application of the different constructions sequentially expand the transient structure.

subunits: {?modifier} {(the . ?modifier)}
syn-cat

phrase-type:np {Ct . £)}

agreement: 2agr {(?agr . ?agr)}

np
parent: 2np {Qparent . 7np)}
categories: {determiner) {(t .)} parent: 7np {(np . ?np)} determinednoun-cxn
parent: 7np {(?parent . 7np)}

“?definite-article - | . . . syn-cat:
""" agreement: ?agr {([-, -, ?3sg, 7pl] . Zagr)}

syn-cat: 2modifier
categories: {noun} {(t . t)}
agreement: 2agr {([-, -, +, ?agr)}

St parent: 7np {(?phrase . ?np)}
lex-id: cat {t . £}
syn-cat
categories: {noun, common-noun} {(t . t)}
2 SNAPE R e
2catunit ——— Sgrecment %eer ey = + 71 - 2agrd} “2cat-unit

Figure 5: The construction application process for the utterance a cat using the Basic English Grammar [20], as visualised by the tool introduced in this
paper. The dependencies between the constructions and their units are clearly indicated with arrows.

230

or comprehension lock, depending on the direction of processing. Every label consists of
two columns:

(a) The first column contains all features that were contributed by the source construc-
tion and were used by the target construction’s lock for matching.

(b) The second column is the binding list that resulted from the matching operation,
with on the left the source feature value and on the right the target feature value to
which it could be bound. If the binding looks like (t . t), it means that two atomic
values were unified, e.g. np LI np.

Figure 5 includes two types of edges. Solid arrows indicate dependencies between directly
adjacent nodes and thus reflect the chronology of construction applications, while dotted
arrows display longer-range dependencies. Let’s focus on the determined-noun-cxn in the
example, and more in particular on its ?noun unit. A solid arrow connects the ?cat-unit
from the cat-noun-lex construction to this unit and the label on the arrow indicates that
the latter gets its parent feature from there. The fact that the arrow is solid marks that
the no other construction has affected this unit between the cat-noun-lex construction and
the determined-noun-cxn. A dotted arrow connects the ?cat-unit from the ?cat-noun-morph
construction to the 7noun unit of the determined-noun-cxn and the label indicates that it
gets its categories and agreement features from there. The dottedness of the arrow shows
that an other construction has affected the unit between the cat-noun-morph construction
and the determined-noun-cxn, namely the cat-noun-lex construction.

3.2 Integration into FCG

The visualisation tool has been integrated into the FCG web interface and monitoring system
[8, 9], and will be included in FCG’s next release. The graph with constructional dependencies
as shown in Figure 5 is automatically added to the visualisation of processing results when the
following configuration option is set:

(set—configuration (visualization—configuration cxn—inventory)
:constructional—dependencies t)

The graph can be customised to the user’s preferences by setting a few additional configu-
ration options in the visualisation configuration of the construction inventory.

e (:labeled—paths nil/no—bindings/t)

This option defines what information is shown on the arrows that indicate the dependen-
cies. nil leaves the arrows empty, t shows the matched features and their bindings (as
shown in Figure 5) and no-bindings shows the matched features without bindings.

e (:colored—paths nil/t)

When this option is set to t, each directed path in the graph is drawn in a different colour.
This means that the units in the construction that have been bound to the same unit in
the transient structure and the arrows connecting these units will have the same colour.

e (:trace—units ’(list—of—unit—names))

Having the matching features and their bindings on all arrows can make larger graphs
quite crowded. Therefore, it is sometimes better to only include the features and bindings
of the specific paths that the grammar engineer is interested in. These paths can be
specified with using the :trace-units option.

For space reasons, we could not include figures showing these different options into the
printed version of this paper, but they are all shown next to each other in the web demonstration
supporting this paper. 231

4 Demonstration

We will now demonstrate the visualisation tool with a somewhat larger example, in which the
linguistic pathway grows into a more intricate web of unit dependencies. We will analyse the
comprehension process of a single sentence, but the web demonstration that accompanies this
paper includes many more (and longer) examples, also for production. Because the graphs
become very detailed when a larger number of constructions are used in the analysis, we chose
to leave out the labels (i.e. the matching features and bindings) on the edges that link the unit
nodes. The complete constructional dependency graphs are included in the on-line web demo.

The example sentence, the cat will jump, contains a noun phrase, a modal auxiliary and
an intransitive main verb. When analysed with the current version of the Basic English gram-
mar ([20] and interactively consultable at www.fcg-net.org/fcg-interactive), 17 constructions
are needed to analyse the sentence in comprehension. The visualisation of the constructional
dependencies is shown in Figure 6.

The constructional dependencies graph contains 17 blue node clusters, one for each construc-
tion that has been applied. On the left side of the graph, we can see that there are four entry
points, i.e. node clusters with no incoming edges. The comprehension locks of these four con-
structions, jump-morph, will-morph, the and determiner-operation-cxn, only require strings that
are found in the input utterance and do not need any features added by previous construction
applications. They create one lexical unit each, which is shown on a green background. After
the the construction has applied and created a ?definite-article unit, the determiner-operation-
cxn can match its ?determiner unit on this unit and create a new ?np unit. The cat-noun-lex
and jump constructions can respectively match on the units created by the jump-morph and
cat-noun-morph constructions, adding information to these units, but not creating any new
ones.

Then, we can see that the lexical units for the modal auxiliary and the lexical main verb are
both affected by the marked-modality-cxn, which creates a new ?vp unit. This ?vp unit is then
modified by the vp-cxn, non-perfect-cxn and the non-progressive-cxn. The determinednoun-cxn
adds information into lexical units for the noun and the definite article, as well as to the 7np
unit. The lexical unit for the noun is further affected by the singular-cxn.

After that, the subject and verb come together. The subject-verb-cxn matches on the ?np
and ?vp units, and creates a new ?clause unit. These three units are then further extended by
the declarative-main-clause-verb-cxn and the intrasitive-cxn.

From this short description, it becomes already clear that constructional dependencies are
a complex matter, and yet, we have only described the information conveyed by the boxes and
the solid arrows in the graph. The visualisation tool allows the grammar engineer and user
to quickly grasp how the grammar has analysed an input utterance and spot possible bugs or
inconsistencies, which was much more difficult using FCG’s standard visualisation. The graphs
are designed to be studied on computer screens, where the users can zoom in and out on parts
of the network. Therefore, they tend to get too large to be printed on paper quite soon.

5 Beyond Language Processing

Although the visualisation tool introduced in this paper was specifically designed for visualising
linguistic pathways yielded by computational construction grammar analyses, it can easily be
applied to other domains as well. In order to demonstrate the generality of the tool, we will
now show an example of its application to a planning problem. As the basic building blocks
of FCG, in particular the exploration of a search space, are so general, the planning problem
could be implemented in the same formalism.

The goal in our planning problem is having pancakes. The initial state is a kitchen’s basic
equipment (a stove, pans, bowls, a whisk, cutlery, ...) and basic ingredients (eggs, butter,
milk, flour, tabasco, ham, ...). The operators are actions such as taking eggs, collecting the
ingredients that are needed for pancake, and putting butter in a pan and putting the pan on
the stove. The planning problem consists in finding a series of subsequent actions that form a
path from the initial state to a state in which ©28%e are delicious pancakes.

i

DU | fpe— R - e
v i |~

Figure 6: The constructional dependencies graph for the utterance the cat will jump using the Basic English Grammar [20].

233

The graph containing the constructional dependencies for the pancake problem is shown in
Figure 7. We can see that in total, 11 actions have been performed to make the pancakes. 7
actions were take-... actions that could be independently performed based on the initial state.
Then, a collect-pancakes-ingredients action matched on the ?flour, 7eggs and ?milk units, creating
a new ?pancake-ingredients unit. The make-pancake-dough action then matched on the ?pancake-
ingredients, ?whisk and 7bowl units and created a new ?pancake-dough unit. The prepare-pan
action matches on the ?pan, 7butter and ?stove units and creates a new ?prepared-pan unit.
Finally, the make-pancakes action matches on the ?prepared-pan unit and the pancake-dough
unit and creates a new pancakes unit. The arrows are labelled with the features on which the
actions match, and the bindings of these features. When looking at the make-pancakes action
for example, we can see that it matches on a ?pancake-dough unit that does not have baked
among its properties (marked in red in the figure). The make-pancakes construction will add
baked to the properties of this unit, and indeed, pancake dough can only be baked a single time.

This visualisation is of course only one possibility for visualising a planning process. It does
not replace other, complementary visualisations, such as the explored search space. The worth
of this visualisation is its focus on the dependencies between the actions, and on which previous
actions have facilitated the performance of later actions. It is particularly useful when actions
are complex and depend on many different factors affected by other actions.

6 Future Work

At this moment, we use the tool to visualise the dependencies between the construction that
were active in the comprehension or formulation process of a single utterance. For the future, we
plan to comprehend a corpus of sentences and gradually build up a large graph containing the
dependencies between all grammatical constructions in the grammar. The edges in the graph
can then be coded with frequency information about (parts of) linguistic pathways and capture
systematic dependencies between groups of constructions. This would allow us to automatically
build and visualise a usage-based constructional dependency graph that evolves over time, for
a complete grammar.

7 Conclusion

In this paper, we have introduced a novel approach to visualising the outcome of constructional
language processing. The linguistic pathways are visualised as graphs, featuring the applied
constructions, why they could apply, with which bindings, and what information they have
contributed. By revealing the dependencies between the applied constructions, these graphs
are very helpful when developing and debugging grammars, while also enhancing the human
readability of construction grammar analyses. The tool has been concretely implemented in
Fluid Construction Grammar, but the proposed visualisations should be easily transferable to
other construction grammar implementations. In order to highlight that the applicability of
the tool is not limited to language processing problems, we have also demonstrated how the
tool can be used to visualise planning problems.

Acknowledgements

We are particularly indebted to Luc Steels, Remi van Trijp and Yannick Jadoul for their support
and valuable feedback during the development of the tool.

References

[1] B. Bergen and N. Chang. Embodied Construction Grammar in simulation-based language
understanding. In Construction Grammar(s): Cognitive and Cross-Language Dimensions.
John Benjamins, 2005. 234

[

Hour

referent: 7 {(Ce .
object:eggs {(t .

status: {in-use} {(t

referent: % {(F
objoct:flour {(t

status: {in-use} {(t .

2e)}
)}
©}

referent: 2> {(b . ?b)}

obiect:buter {Ct . £}

status: {in-use} {(t .)}

reerent % {(p . 7D} | Tourer |
object:pan {(t .)}

status: {in-use} {(t .)} 7pan
roferont: 2w {Cw . 74} Tproenecen
object:whisk {Ct . £}

status: {in-use} {(t .)}

args: (7]
meaning: {pancake-ingredients(?i, %i1

{Cpi . 20}
72, %)} {(m . ?13),
(f . 212),

(e . 2i1),
Gpi . 210}

2whisk

“ingredients

=
=0
(=

referent: 2m {(m .
object: milk {(t .

status: {in-use} {(t

referent: 2 {(b . ?

object: bowl {(t
status: (in-use} {Ct

235

meaning: {prepared-pan(?pp, 79, 7, 79} (s . 25),
[

args: (2]

meaning: {pancake-dough(?d, ?bowl, 2w, %)} {(?pi . 7i), 7pan
. 7wy e

status: ~baked

Figure 7: Using the new visualisation tool for a (hierarchical) planning problem.

),
(@ .),
Cpp . 7pp)}

{Q(2d . 2d)}

b . 7bowl),
(2d . ?2d)}
{t . ©}

7pancake-dough
S Bkt

2l

(4]

5]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

(16]
(17]

(18]

19]

20]

N. Chang, J. Feldman, R. Porzel, and K. Sanders. Scaling cognitive linguistics: Formalisms
for language understanding. In Proc. Ist International Workshop on Scalable Natural
Language Understanding, 2002.

W. Croft. Radical Construction Grammar: Syntactic theory in typological perspective.
Oxford University Press, Oxford, 2001.

C.J. Fillmore, P. Kay, and M.C. O’Connor. Regularity and idiomaticity in grammatical
constructions: The case of let alone. Language, 64(3):501-538, 1988.

A.E. Goldberg. Constructions: A construction grammar approach to argument structure.
University of Chicago Press, Chicago, 1995.

A E. Goldberg. Constructions at work: The nature of generalization in language. Oxford
University Press, Oxford, 2006.

P. Kay and C.J. Fillmore. Grammatical constructions and linguistic generalizations: the
What’s X doing Y? construction. Language, 75(1):1-33, 1999.

M. Loetzsch. Tools for grammar engineering. In L. Steels, editor, Computational Issues in
Fluid Construction Grammar. Springer Verlag, Berlin, 2012.

M. Loetzsch, J. Bleys, and P. Wellens. Understanding the dynamics of complex lisp pro-
grams. In Proceedings of the 2nd European Lisp Symposium, pages 59-69, Milano, Italy,
May 2009.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(2):258-282, 1982.

A. Newell, J.C. Shaw, and H.A. Simon. Empirical explorations of the logic theory machine:
A case study in heuristic. In Papers Presented at the February 26-28, 1957, Western Joint
Computer Conference: Techniques for Reliability, IRE-AIEE-ACM ’57 (Western), pages
218-230, New York, NY, USA, 1957. ACM.

N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub. Co.,
1971.

J.A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23-41, 1965.

J.A. Robinson. Computational logic: The unification computation. Machine intelligence,
6:63-72, 1971.

L. Steels, editor. Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam, 2011.

L. Steels. Basics of Fluid Construction Grammar. Constructions and Frames, 9(2), 2017.

L. Steels, J. De Beule, and P. Wellens. Fluid Construction Grammar on real robots.
Language Grounding in Robots, pages 195-213, 2012.

L. Steels and P. Van Eecke. Insight grammar learning using pro- and anti-unification.
Forthcoming.

L. Steels and E. Szathméary. Fluid Construction Grammar as a biological system. Linguis-
tics Vanguard, 12(1), 2016.

R. van Trijp. A computational construction grammar for English. In The AAAI 2017
Spring Symposium on Computational Construction Grammar and Natural Language Un-
derstanding Technical Report, number SS-17-02, pages 266-273, Stanford, 2017. Associa-
tion for the Advancement of Artificial Inte%gence.

[21] P. Wellens. Organizing constructions in networks. In L. Steels, editor, Design Patterns in
Fluid Construction Grammar, pages 181-201. John Benjamins Publishing Company, 2011.

[22] P. Wellens and J. De Beule. Priming through constructional dependencies: a case study
in fluid constructions grammar. In Proceedings of the 8th International Conference on the
Evolution of Language (EVOLANG 8), pages 344-351, Singapore, 2010. World Scientific.

237

