

e
added-by-repair, exn-applied
diagnostic-triggered, cxn-applied
root |
root

TTi>»e><

| the-
verb- likes- noun- ‘ word-63
e 4 word21 || | | — i
(cxn 0.50)

t linguist-
ord-19
® wi

ol the-word-61
E ‘ -
un-
u verb- || likes-
word-63
word-unit-21

Figure 9: Excerpt from the construction application pro-
cess triggering a diagnostic (orange node) and repair (yellow
node) for adding a new lexical construction.

book-cxn (lex 0.50) show attributes

?word-unit

args: [?0bj-39]

parent: ?parent-unit o ?word-unit

syn-cat: ¢ # meaning: {book(?0obj-39)}
lex-class: ?lex-class # form: {string(?word-unit, "ropapa")}

sem-cat:

sem-class: ?sem-class

Figure 10: Lexical construction created for the concept
(book 7x). The string that was assigned to this construction
happens to be “ropapa” and the lex-class and sem-class are
left underspecified.

to eventually create a new lexical construction himself. This
way, the word “ropapa” with the meaning of (book ?x) might
spread in the population of agents.

Inducing New Phrasal Constructions

An important function of grammar is to narrow down refer-
ential ambiguity by encoding co-reference relations explic-
itly. The formal means by which these relations are encoded
can vary, but many languages employ word order and/or
markers for this purpose. In this example, we will show
how meta-layer diagnostics and repairs can be used to learn
phrasal constructions that integrate new units into existing
phrases.

Diagnostic Missing phrasal constructions are diagnosed
when (i) no more constructions are applicable, (ii) all input
strings have been covered by lexical constructions, (iii) the
semantic network extracted from the final transient structure
is not fully connected (i.e. it contains more than one chunk),
and (iv) no existing constructions can easily be generalised
to apply to the transient structure (see next section).

Repair A new phrasal construction is created. This con-
struction makes the referents of two units equal and captures
the observed word order.

Consolidation The phrasal-cxn is too general to be added
as such to the cxn-inventory, as it would apply in cases

262

for which it is not appropriate. However, the pro-unification
technique that will be explained in the next section can be
used to constrain the new phrasal construction towards the
observed case before adding it to the cxn-inventory.

Example In the following example (see WD-3), the ut-
terance that needs to be comprehended is “the green
mouse”. The grammar contains lexical constructions for
“the”, “green” and “mouse”, as well as a “noun-phrase-cxn”
that combines an article and a noun into a noun phrase. The
grammar does not contain any constructions that can inte-
grate an adjective into a noun phrase.

Routine processing applies the three lexical constructions
and the noun-phrase-cxn. At this moment in processing,
the meaning network in the transient structure is uncon-
nected (as shown in Figure 11) and the diagnostic for miss-
ing phrasal constructions creates a new problem, triggering
a jump to the meta-layer.

(green ?x-17632) (mouse ?x-17630)

C

(unique ?x-17630)

Figure 11: Unconnected semantic network.

On the meta-layer level, the repair makes a new phrasal
construction as shown in Figure 12. The construction spec-
ifies that the lexical unit, in this case the adjective “green”,
should have the same referent as the phrase it will be inte-
grated in, in this case the noun phrase. This is ensured by
making the value of the ‘args’ feature in both units equal
(args: [?ref]). Concerning the form, the construction speci-
fies that the lexical unit is left-adjacent to the phrasal head
within the scope of the phrase.

phrasal-cxn (cxn 0.50) show attributes

?lexical-unit
args: [?ref]
sem-cat:
sem-class: ?sem-class-1
syn-cat:
lex-class: ?lex-class-1

?phrasal-head

?parent-unit

args: [?ref] o) args: [?ref]
subunits: ses:_':—aél.ass ?sem-class-2
{?lexical-unit, ?phrasal-head} —

syn-cat:

lex-class: ?lex-class-2

?parent-unit

@

form:
{meets(?lexical-unit, ?phrasal-head,
?parent-unit)}

Figure 12: Phrasal construction that was created by the re-
pair to integrate “green” into the noun phrase.

By applying the new phrasal construction to the transient
structure, the unit for “green” is integrated into the noun
phrase. The problem state now qualifies as a solution, and
the resulting meaning representation is a single, fully con-
nected network. The problem states in which the diagnostic

triggered and in which the repair-cxn was created and ap-
plied are shown in Figure 13 below.

noun-phrase-cxn (cxn 0.50)

diagnostic-triggered, cxn-applied

phrasal-cxn (cxn 0.50)

succeeded, added-by-repair, cxn-applied

&

mouse-7
noun-phrase-10
-ths-l!

Figure 13: The nodes (problem states) in which the missing
phrasal cxn diagnostic triggered (orange) en in which the
phrasal-cxn applied (dark green).

‘ noun-phrase-10 green-6 |

Generalising and Specialising Constructions using
Anti- and Pro-unification

Innovation in language often relies on novel constructions
that share most of their properties with already existing con-
structions. These innovations pose a challenge to computa-
tional systems, as the small number of features that differen-
tiate the novel constructions from existing ones block their
application completely. This is for example the case for co-
ercions (different syntactic or semantic category), the emer-
gence of new word orders (different word order features), or
the raise and decline of agreement systems (different equal-
ity constraints). In order to process these phenomena, it is
useful to be able to temporarily relax the conflicting features
of a construction, while still matching and merging the bulk
of the features when the construction applies. At the same
time, the features and values that are more specific in the
novel construction than in the general one should be learned.
This avoids storing constructions that are too general and
therefore apply too widely.

Steels and Van Eecke (2017) present two general and
powerful operators that allow to flexibly match construc-
tions and learn from their application. The first operator,
called anti-unification, finds the least general generalisation
of a construction that matches a given transient structure.
In other terms, the anti-unification of a construction and a
transient structure always returns a new construction that
matches that transient structure. The features of the original
construction that blocked the matching process are relaxed
through generalization. The algorithm also returns a cost, in-
dicating the distance between the original construction and
the anti-unified construction. When the original construc-
tion already matches the transient structure, the same con-
struction is returned with cost 0. When it does not match, a
matching, generalised construction is returned with a cost >
0, depending on the number, depth, and kind of features that
needed to be relaxed.

While anti-unification generalises a construction to match
a transient structure, the second operator, called pro-
unification, specialises a construction towards a transient
structure. There are many options in the algorithm, but one

263

of the basic functions is to bind different variables in the con-
struction that are bound to the same values in the transient
structure to each other. Pro-unification is used immediately
after anti-unification before a new construction is stored.
Given a new observation (transient structure) and a con-
struction, anti-unification returns a generalised construc-
tion that matches the observation, while pro-unification spe-
cialises the generalised construction towards the observa-
tion. The pro-unified construction strikes a good generality-
specificity balance, such that it can be added to the con-
struction inventory and become part of the grammar. The
generality-specificity and matching relations between con-
structions and transient structures involved in anti- and pro-
unification are schematically sketched in Figure 14.

Generalized
construction

Pro-Unification

1
Antr'—Uni_ﬁcatij/ I
1

1

1Match

1
Existing Isucceeds Specialized
construction . : construction

N 1 4
S 1 ¢
\ .
Match "q ¥ +" Match

fails succeeds

Transient structure

Figure 14: A schematic representation of anti-unification
and pro-unification of a construction with a transient struc-
ture. Figure adapted from Steels and Van Eecke (2017).

Diagnostic A problem of the type
matching-conflict is created when no more
constructions can apply and the meaning network extracted
from the final transient structure is not fully connected, i.e.
consists of more than one chunk.

Repair The different grammatical constructions of the
grammar are anti-unified with the final transient structure
and the cost is recorded. Then, the anti-unified construc-
tion with the lowest cost is applied to the transient struc-
ture and processing in the routine layer can continue. If no
anti-unified construction can be found with a cost under a
grammar-specific threshold, the repair signals that it cannot
be used for this problem.

Consolidation The anti-unified construction is pro-unified
with the resulting transient structure. The pro-unified con-
struction is then added to the construction inventory.

Example We will now show an example of how anti-
unification and pro-unification are integrated in the meta-
layer framework (see WD-4). The example shows how the
word order constraints in a noun phrase can be relaxed to

process a new observation and how the observed word order
can be captured in a new construction.

For the sake of clarity, let’s assume that the grammar of a
French-learning agent consists only of lexical constructions
and a noun phrase construction that groups a determiner, an
adjective and a noun (in that order) into a noun phrase. This
means that the agent can comprehend and produce utter-
ances such as “le formidable diner” (‘the splendid dinner’).
Now, the agent observes an utterance “le diner formidable”
(‘the dinner splendid’) in which the adjective is placed af-
ter the noun. This word order is also correct in French, so
we would like the agent to learn a new construction cover-
ing noun phrases with adjectives in postposition. Let us first
have a look at the transient structure after the application of
the lexical constructions, as shown in Figure 15. Units of
which the features are not relevant to this example are col-
lapsed in the image and co-reference relations are indicated
in colour.

transient structure

root

form:
{meets(diner-15, formidable-9),
meets(un-21, diner-15)}

©lun-21]
diner-15 .

Figure 15: The transient structure after applying the lexical
constructions to “un diner formidable”.

We can see that the observed word order of the ut-
terance is present in the transient structure in the form
of two ‘meets’ constraints, indicating that ‘un’ immedi-
ately precedes ‘diner’ and ‘diner’ immediately precedes
‘formidable’. When we have a look at the agent’s noun-
phrase-cxn, which is shown in Figure 16, we can see that the
comprehension lock stipulates that the article should meet
the adjective and that the adjective should meet the noun.
The construction does not match the transient structure and
can therefore not apply.

At this point, a problem of the type
matching-conflict is created by the diagnostic.
FCG jumps to its meta-layer and the different constructions
of the inventory are anti-unified with the transient structure.
The NP-cxn has the lowest anti-unification cost. The
resulting anti-unified construction is shown in Figure 17.
We can see that the conflicts in the ‘meets’ constraints are
solved through generalisation. The meets constraints now
contain unbound variables (?adj-468 and ?noun-412 are
not linked to units anymore). The anti-unified NP-cxn can
now apply to the transient structure and lead to a successful
result.

The construction made by anti-unifying the NP-cxn with
the transient structure solves the comprehension problem for

264

np-cxn (cxn 0.50) show attributes

’ ?noun ‘

‘ ?art ‘

?np-unit ¢ o ‘?adj ‘

?np-unit

1]

form: {meets(?adj, 2noun),
meets(?art, ?adj)}

Figure 16: The NP-cxn from the cxn-inventory of the
French-learning agent.

anti-unified-np-cxn-17 (cxn 0.50) show description

?np-unit-136
@

form: {meets(?adj-468, ?noun-412),
meets(Part-132, ?adj-468)}

?art-132 |

2adj-452 \

| 2noun-396 }

Figure 17: The result of anti-unifying the NP-cxn from Fig-
ure 16 with the transient structure from Figure 15.

the observation at hand. It is however too general to add to
the construction inventory because its word order features
are not ‘meaningful’ anymore and would accept any word
order. We want to specialise this construction towards the
observation, by capturing the observed word order.

In order to achieve this, we will now pro-unify the con-
struction with the transient structure. The pro-unification al-
gorithm searches for variables in the construction that are
bound to the same value in the transient structure. When uni-
fying the anti-unified construction in Figure 17 and the tran-
sient structure in Figure 15, we see that the variables ?adj-
468 and noun-396 from the construction will both be bound
to diner-15 in the transient structure. Likewise, ?noun-412
and ?adj-452 will be both bound to formidable-9. For both
cases, the pro-unification algorithm will replace one of the
variables from the construction by the other one. This cap-
tures the observed word order in the construction. The names
of the variables ?adj-468 and ?noun-412 can be confusing,
because they are indeed never bound to an adjective and
noun. They were however just free variables. Their names
were chosen by the anti-unification algorithm based on the
variable names in the original construction, but are as mean-
ingless as 7x ?y, or 7some-variable-name.

The construction that results from the pro-unification pro-
cess is shown in Figure 18. We can see that it now states that
the noun should immediately precede the adjective and that
the article should immediately precede the noun. This cap-
tures indeed the word order of the observed example. Dur-

ing consolidation, the construction will be added to the con-
struction inventory and will in the future cover any new noun
phrases with this word order in routine processing.

pro-unified-anti-unified-np-cxn-17-1 (cxn 0.50) show description

?np-unit-136
@

form: {meets(?noun-396, ?adj-452),
meets(?art-132, 2noun-396)}

] ?art-132 |

?adj-452 }

‘ ?noun-396 ‘

Figure 18: The result of pro-unifying the anti-unified NP-
cxn from Figure 17 with the transient structure from Figure
15. The resulting pro-unified construction allows adjectives
to occur in postnominal position.

Related Work

The meta-layer already has a long history in evolution-
ary linguistics experiments, in which robust communication
plays an important role as agents create new linguistic con-
ventions from scratch. A previous article on the topic de-
scribed three different levels of applications that are relevant
within the language game approach: the FCG-level (cover-
ing linguistic processing itself), the process-level (concern-
ing cognitive processes in the semiotic cycle) and the agent-
level (dealing with agent behaviours and turn-taking) (Beuls,
Van Trijp, and Wellens 2012). Yet, to use the meta-layer ar-
chitecture in an FCG grammar, the grammar engineer had
to extend the FCG system with his or her own classes and
search heuristics. Our current contribution makes an effort
to integrate the meta-layer inside regular FCG engineering
so that diagnostics and repairs can easily become part of any
FCG grammar. Other examples of FCG diagnostics and re-
pairs that were implemented in earlier versions of the for-
malism are described by Steels and van Trijp (2011) and van
Trijp (2012).

Cognitive architectures such as ACT-R (Anderson 2007)
and Soar (Laird, Newell, and Rosenbloom 1987; Laird 2012)
also support the idea of a meta-layer, in the sense of incor-
porating two processing cycles: A routine layer that is con-
trolled by knowledge retrieved from procedural memory and
a meta-layer that modulates this basic processing layer with
data from declarative memory. Systems such as NL-Soar
applied the Soar theory to sentence processing (Lehman,
Lewis, and Newell 1991). A similar system for ACT-R has
been presented by Lewis and Vasishth (2005). Paying a lot
of attention to the cognitive relevance of their models, ACT-
R architectures try to adhere to “well established cogni-
tive constraints” in human language understanding (Ball et
al. 2010), something which plays a more peripheral role in
Fluid Construction Grammar.

265

Conclusion

Agent-based cognitive systems commonly employ a meta-
layer architecture for enhancing their robustness. The rou-
tine layer then serves routine processing and the meta-layer
is used for on-the-fly problem solving. In this paper, we have
described the integration of a meta-layer architecture into
Fluid Construction Grammar. It is based on diagnostics that
detect problems during routine processing, repairs that find
solutions to these problems, and consolidation strategies that
learn these solutions for later reuse. Besides the architecture,
we have presented general and powerful operators that facil-
itate repair and consolidation in constructional language pro-
cessing. The meta-layer and these operators make language
processing more robust against erroneous input and can ac-
commodate the constant evolution of language by introduc-
ing necessary innovations or by learning from the innovative
language use of others.

References

Anderson, J. R. 2007. How can the human mind occur in
the physical universe? New York: Oxford University Press.

Ball, J.; Freiman, M.; Rodgers, S.; and Myers, C. 2010.
Toward a functional model of human language processing.
In Proceedings of the 32nd Annual Meeting of the Cognitive
Science Society.

Beuls, K.; Van Trijp, R.; and Wellens, P. 2012. Diagnostics
and repairs in Fluid Construction Grammar. In Steels, L.,
ed., Language Grounding in Robots. Berlin: Springer. 215—
234,

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial intelli-
gence 33(1):1-64.

Laird, J. E. 2012. The Soar cognitive architecture. MIT
Press.

Lehman, J. E.; Lewis, R. L.; and Newell, A. 1991. Integrat-
ing knowledge sources in language comprehension. In Pro-
ceedings of the Thirteenth Annual Conference of the Cogni-
tive Science Society, 461-466.

Lewis, R. L., and Vasishth, S. 2005. An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive science 29(3):375-419.

Newell, A., and Simon, H. A. 1972. Human problem solv-
ing, volume 104. Prentice-Hall Englewood Cliffs, NJ.

Steels, L., and Van Eecke, P. 2017. Insight grammar learning
using pro- and anti-unification. forthcoming.

Steels, L., and van Trijp, R. 2011. How to make construction
grammars fluid and robust. In Steels, L., ed., Design patterns
in fluid construction grammar. John Benjamins. 301-330.

Steels, L. 2011. Design patterns in fluid construction gram-
mar, volume 11. John Benjamins Publishing.

Steels, L. 2016. Basics of fluid construction grammar. Un-
der Review.

van Trijp, R. 2012. A reflective architecture for robust lan-
guage processing and learning. In Steels, L., and Hild, M.,
eds., Computational issues in Fluid Construction Grammar.
Springer. 51-74.

