arXiv:2505.12920v1 [cs.CL] 19 May 2025

PyFCG: Fluid Construction Grammar in Python

Paul Van Eecke*
Artificial Intelligence Laboratory
Vrije Universiteit Brussel, Belgium
paul@ai.vub.ac.be

Abstract

We present PyFCG, an open source software
library that ports Fluid Construction Grammar
(FCG) to the Python programming language.
PyFCG enables its users to seamlessly inte-
grate FCG functionality into Python programs,
and to use FCG in combination with other li-
braries within Python’s rich ecosystem. Apart
from a general description of the library, this
paper provides three walkthrough tutorials that
demonstrate example usage of PyFCG in typi-
cal use cases of FCG: (i) formalising and test-
ing construction grammar analyses, (ii) learn-
ing usage-based construction grammars from
corpora, and (iii) implementing agent-based
experiments on emergent communication.

1 Fluid Construction Grammar

Fluid Construction Grammar (FCG — Steels, 2004;
van Trijp et al., 2022; Beuls and Van Eecke, 2023)
is a computational construction grammar frame-
work that provides a collection of high-level build-
ing blocks for representing, processing and learn-
ing fully-operational construction grammars. The
FCG framework is conceived as an open instrument
that is not tied to a particular construction grammar
theory, but that strives for compatibility with any
linguistic theory that adheres to the most fundamen-
tal tenets underlying constructionist approaches
to language (see e.g. Fillmore, 1988; Croft, 2001;
Goldberg, 2003). As such, it subscribes to the view
(1) that language users dynamically build up their
own linguistic systems as they communicate with
other members of their community, (ii) that these
linguistic systems can be captured as a network
of form-meaning mappings called constructions,
and (iii) that these constructions can pair forms
and meanings of arbitrary complexity and degree

“Both authors contributed equally. The authors declare
that this paper was conceived and written without the assis-
tance of generative writing aids.

Katrien Beuls*
Faculté d’informatique
Université de Namur, Belgium
katrien.beuls@unamur.be

of abstraction, thereby facilitating a uniform han-
dling of both compositional and non-compositional
linguistic phenomena.

FCG is primarily being used as the language rep-
resentation, processing and learning component in
agent-based models of linguistic communication.
Such models simulate the emergence, evolution
and acquisition of human languages in populations
of artificial agents that take part in situated com-
municative interactions modelled after those that
human language users continuously engage in (e.g.
van Trijp, 2016; Beuls and Van Eecke, 2024). Other
common uses of FCG include the formalisation and
computational operationalisation of construction
grammar analyses (e.g. Gerasymova, 2012; Micelli,
2012), and the corroboration of construction gram-
mar theories with empirical data (e.g. Moerman
et al., 2024).

FCG is being developed as an open-source com-
munity project, which brings together the construc-
tion grammar and computational linguistics com-
munities. While strong ties between both commu-
nities already existed when the field of construction
grammar was founded in the 1980s, recent initia-
tives such as UCxn (Weissweiler et al., 2024) and
the Construction Grammars and NLP (CxGs+NLP)
workshop series (Bonial and Tayyar Madabushi,
2023), along with an increasing volume of work on
constructions in Large Language Models (see e.g.
Tayyar Madabushi et al., 2020; Tseng et al., 2022;
Weissweiler et al., 2022; Bonial and Tayyar Mad-
abushi, 2024; Xu et al., 2024), bear witness to a
growing interest in research at the intersection of
both fields.

2 FCG in Python, Really?

Readers who have regularly used FCG might argue
that there already exists a stable and mature, effi-
cient, cross-platform and open source implementa-
tion of FCG, with an active and dedicated, albeit

https://arxiv.org/abs/2505.12920v1

small, developer community'. Indeed, the refer-
ence FCG implementation is written in Common
Lisp, a dynamic and extensible programming lan-
guage that, admittedly, excellently fits the project’s
requirements, including multi-paradigm, high-level
and multi-threaded programming, fast prototyping,
and highly efficient symbol processing. So why
would anyone spend time and effort on a Python
port?

The reality is that Python has become the most
popular programming language in the world? and
that, more consequentially, it has also become the
dominant language in programming education, as
well as today’s de facto standard in both linguistics
and natural language processing research. Prac-
tically speaking, this entails that the success of a
software library targeted at the broader computa-
tional linguistics community depends before all
other things on its compatibility with the Python
ecosystem. While this might sound utterly unrea-
sonable, it is not entirely so. For one thing, com-

puter programs typically integrate a variety of ex- 2

ternal libraries, and, for better or for worse, the
largest selection of libraries tends to be developed
for the most popular programming languages. For
another, the investment involved in learning to use
a new programming language and environment is
a very real obstacle for potential users in today’s
time-pressed society.

The development and release of PyFCG follows
a trend set by many other libraries that are com-
monly used in the computational linguistics com-
munity. For example, the Stanford CoreNLP Java
library (Manning et al., 2014) is now accessible
from Python through the Stanza library (Qi et al.,
2020). Likewise, the PRAAT system for phonetic
analysis (Boersma and Weenink, 2025), written
in C and C++, is now widely used in Python pro-
grams via the Parselmouth library (Jadoul et al.,
2018). The Torch library for tensor computation,
written in C and Lua, is now even primarily being
developed for Python as part of the PyTorch project
(Paszke et al., 2019).

3 FCG in Python, Finally!

Readers who have not yet used FCG, perhaps for
the reasons mentioned above, might wonder why
it has taken so long for FCG to make its way into

1Seehttps://gitlab.ai.vub.ac.be/ehai/babelfor
the project’s code repository.
2https://www.tiobe.com/tiobe-index/

1

the Python ecosystem. It could be ascribed to a
lack of actual problems with the existing reference
implementation, to the sheer size, scope and com-
plexity of its codebase, to the difficulty of funding
scientific software development, or perhaps most
likely, to a combination of all these factors. But
fret no more:

$ pip install pyfcg

Once pip-installed, PyFCG can readily be im-
ported as a module into Python programs. It is
customary to define fcg as an alias for the PyFCG
module, so that all functionality is available within
the fcg namespace. We initialise PyFCG by call-
ing its init () function, which loads (or downloads
if necessary) all external dependencies. PyFCG’s
documentation is available on the Read the Docs
platform® and interactive tutorial notebooks sup-
porting this paper can be downloaded from the
FCG community website*.

>>> import pyfcg as fcg
>>> fcg.init ()

On the highest level, PyFCG defines three
classes that are of interest to the user: Agent,
Grammar and Construction. The idea is that an
agent (of type Agent) has a grammar (of type
Grammar), which in turn holds constructions (of
type Construction). The Agent class is the main
entry point for the user. Upon the creation of a
new agent, it is automatically initialised with an
empty grammar, i.e. a grammar that holds zero
constructions.

>>> demo_agent = fcg.Agent ()
>>> demo_agent.grammar.size ()

3 0

It was an explicit design choice to tie grammars
to agents, emphasising FCG’s view that a grammar
always represents the linguistic knowledge of an
individual language user. Grammars are in princi-
ple never shared between agents and cannot exist
outside an agent. Instances of the Grammar class
should therefore only be created implicitly via the
Agent class.

4 PyFCG at Work

We present three walkthrough tutorials that show-
case how PyFCG can be integrated in typical use
cases of FCG: grammar formalisation and testing

3https://pyfcg.readthedocs.io
*https://fcg-net.org/pyfcg

https://gitlab.ai.vub.ac.be/ehai/babel
https://www.tiobe.com/tiobe-index/
https://pyfcg.readthedocs.io
https://fcg-net.org/pyfcg

W o =

(4.1), learning grammars from semantically anno-
tated corpora (4.2), and modelling emergent com-
munication (4.3). Each tutorial is accompanied by
an interactive notebook, which can be downloaded
from the FCG community website*.

4.1 Grammar formalisation and testing

A common use of FCG revolves around the for-
malisation and computational operationalisation of
construction grammar theories and analyses. Not
only can computational operationalisations help
validate their preciseness and internal consistency,
they also facilitate the comparison, exchange and
integration of insights from different researchers
(van Trijp et al., 2022). This tutorial exemplifies
how PyFCG can be used to equip an agent with
a designed grammar, how new constructions can
be added to or removed from the agent’s grammar
on the fly, how the agent can use its grammar to
comprehend and formulate utterances, and how all
these processes can be visually inspected through
FCG’s graphical web interface. For more infor-
mation on aspects of the syntax and semantics of
FCG that are not particular to the PyFCG module,
we refer the interested reader to Van Eecke (2018,
Chapter 3)°.

After importing and initialising PyFCG, we cre-
ate a new agent named Sue. Sue, as an instance
of the fcg.Agent class, is automatically initialised
with an empty grammar. Sue is also assigned a
unique identifier:

>>> sue = fcg.Agent(name="'Sue')
>>> sue
<Agent: Sue (id: sue-1) ~ @ cxns>

Sue can read in a predefined grammar, specified
in the Open FCG Exchange Format (OFEF). In
this case, we use PyFCG’s load_resource func-
tion to download a human-designed demo gram-
mar fragment that specifies six constructions for
processing the English resultative sentence “Fire-
fighters cut the child free’®. This grammar frag-
ment uses the Abstract Meaning Representation
format (AMR; Banarescu et al., 2013) to represent
constructional meaning’. We instruct Sue to load
the grammar specified in the file by calling their
load_grammar_from_file method and then list
the names of the constructions that were loaded.

30r alternatively to https://emergent-languages.
org/wiki/docs/recipes/fcg/syntax-and-semantics

6Exannﬂeaﬁerfkﬁﬁnann(2018)

"AMR meaning representation kindly provided by Claire
Bonial (p.c. 31/03/2023).

SR —_

= o v ok

o

3 >>> amr =

1

)

>>> f = fcg.load_resource('demo-
resultative. json')

>>> sue.load_grammar_from_file(f)

>>> sue

<Agent: Sue (id: sue-1) ~ 6 cxns>

>>> list(sue.grammar.cxns.keys())

['firefighters-cxn', 'child-cxn',
‘cut-cxn', 'free-cxn', 'np-cxn',
'resultative-cxn']

We now ask Sue to comprehend the utterance
“Firefighters cut the child free.”. In FCG, compre-
hension and formulation respectively refer to the
processes of mapping utterances to their meaning
representation and vice versa. In order to be able to
visually inspect Sue’s comprehension process, we
first start up FCG’s graphical web interface and acti-
vate the standard trace-fcg monitor. After having
comprehended the utterance, we visualise the re-
sulting AMR meaning representation in the more
human-readable Penman format. We can see that
Sue understood that a cutting action in the sense
of ‘slice, injure‘ (denoted by PropBank’s cut-01
roleset; Palmer et al., 2005) was performed by an
‘intentional cutter’ (argd in cut-01), more in par-
ticular a person who habitually ‘fights’ (fight-01)
fire (argl in fight-01), and that the cutting action
itself led to (arg@-of in cause-01) the ‘uncon-
strained, unrestricted’ state (free-04) of a child
(arglin free-04). A screen capture of the web in-
terface after comprehending the utterance is shown
in Figure 1.
>>> fcg.start_web_interface ()
>>> fcg.activate_monitors(['trace-fcg'])
sue.comprehend("Firefighters

cut the child free."”)
>>> fcg.predicate_network_to_penman (amr)
"(c / cut-01
:argd (p / person
:arg@-of (f / fight-01
cargl (f2 / fire)))
:arg@-of (c2 / cause-01

:argl (f3 / free-04
:argl (c3 / child))))'

Let us now add a new construction to Sue’s gram-
mar: the DOG-CXN that in essence pairs the form
“dog” with its AMR meaning of instantiating the
dog concept. Along with its name, we specify its
contributing and conditional poles, and load it into
Sue. We also add a categorial link between the
category proper to the DOG-CXN and the category
of the noun slot in the NP-CXN, following the de-
sign choices made in the demo grammar fragment
and very much in the spirit of Radical Construction
Grammar (Croft, 2001).

>>> dog_cxn = fcg.Construction(
name= 'dog-cxn',

https://emergent-languages.org/wiki/docs/recipes/fcg/syntax-and-semantics
https://emergent-languages.org/wiki/docs/recipes/fcg/syntax-and-semantics

& Babel web interface X+

[(=]

<« C O D httpy/flocalhost:8010

®

Comprehending "Firefighters cut the child free."

Constructional dependency graph:

the-x-cxn

?the-x-unit

free-om

?free-unit

reset

]

2550 ?p-151)

(arg0-of

et
7child-unit > Txunit ‘ |
|| | 2resuttative-clause-unit
o
?result-entity-unit
Pcut-unit ‘ - (person
> Jaction-unit
firefighters-cxn
7agent-unit
“irefighters-unit (fghto1
ight-
?result-predicate-unit
= 4

2p-151

f”__J

71302)

Resulting meaning representation:

(child 2c-555)

\

(argl 2299 7¢-555)

(argl 2c-560 £-209) (free-04 £-200)

26-560) \

(cause-01 ?c-560)

(arg0-of 7c-550

(cut-01 ?c-550)

2p-151)

|

2-302)

~

(argl 2302 22-151)

|

(fire 2r2-151)

Figure 1: Screen capture of FCG’s web interface after calling sue.comprehend("Firefighters cut the child

free.") with the trace-fcg monitor activated.

contributing_pole=
[('"?dog-unit"',

{'referent': '?2d',
'‘category': 'dog-cxn',
'boundaries':
('?left', '"?right')})1,

conditional_pole=
[('"?dog-unit"',

{'#meaning': [('dog', '?d')1},
{"#form':
[('sequence', '"dog"',
'?2left', '?right')I}) 1)

>>> sue.add_cxn(dog_cxn)
>>> sue.add_category('dog-cxn')
>>> sue.add_link('dog-cxn', 'np-cxn-n'")
>>> sue
<Agent: Sue (id: sue-1) ~ 7 cxns>

We now ask Sue to use their grammar to
formulate an utterance that expresses that a cut-
ting action in the sense of ‘slice, injure‘ was per-
formed by an ‘intentional cutter’, more in partic-
ular a person who habitually ‘fights’ fire, and that
the cutting action itself led to the ‘unconstrained,
unrestricted’ state of a dog:

'"(c / cut-01
:argd (p / person
:arg@-of (f / fight-01
rargl (f2 / fire)))
:arg@-of (c2 / cause-01
argl (f3 / free-04
:argl (d / dog))))'

>>> amr =

8

9
10

>>> amr = fcg.
penman_to_predicate_network (amr)

>>> sue.formulate (amr)

'"Firefighters cut the dog free.' ,

We can see that Sue produces the utterance “Fire-
fighters cut the dog free.”. Again, the construction
application process can be traced in detail in the
web interface.

4.2 Learning grammars from corpora

A second use case of FCG concerns the learning of
construction grammars from corpora of language
use. We take the example of fcg-propbank, an
existing FCG subsystem for learning construction
grammars from PropBank-annotated corpora. We
demonstrate how a pretrained grammar comprising
tens of thousands of constructions can be loaded
into an agent and used to extract semantic frames
from open-domain text, how a new grammar can
be learnt from annotated data, and how large gram-
mars can be saved in an efficiently loadable binary
format.

As always, we start by creating an agent.
In this case, the agent is an instance of the
fcg.PropBankAgent class, a subclass of the
fcg.Agent class provided by the fcg-propbank

L T

S}

oW

w

FEE: "visiting"

FEE: "enjoy"

Arg1: "New York" | |Arg1: "visiting New York"

Figure 2: Semantic frames resulting from the compre-
hension process of the utterance “They enjoy visiting
New York.” (COCA).

subsystem. We download a pretrained, precom-
piled grammar for English and load it into our
agent using its load_grammar_image method. The
agent now has at its disposal a grammar consisting
of 21,052 constructions.

>>> pb_pretrained = fcg.PropBankAgent ()

>>> f = fcg.load_resource('pb-en.store’)
>>> pb_pretrained.load_grammar_image (f)

>>> pb_pretrained

<Agent: (id: agent-1) ~ 21052 cxns>

Our agent can now use its pretrained grammar
to comprehend new utterances. Below, we instruct
our agent to comprehend the passive utterance
“Margaret Thatcher was elected Prime Minister
of Britain.” (Herbst and Hoffmann, 2024, from
NOW-19-12-08-US). The resulting meaning rep-
resentation reveals that the agent identified a sin-
gle semantic frame that instantiates the elect. 01
PropBank roleset (‘elect someone to an office or po-
sition’). The agent also understood that the roles of
‘candidate’ (argl) and ‘office or position’ (arg2)
in this instance of elect.@1 are respectively taken
up by “Margaret Thatcher” and “Prime Minister
of Britain”.
>>> pb_pretrained.comprehend(”"Margaret

Thatcher was elected Prime Minister
of Britain.")

[{'roleset': 'elect.@1', 'roles': [
('v', "elected"),
('argl', "Margaret Thatcher"),
('arg2', "Prime Minister of Britain”)]
3]

To enhance human readability, we can again
choose to activate an FCG monitor to trace the
comprehension process in the web interface. Fig-
ure 2 shows the visualisation of the two frames
extracted from the utterance “They enjoy visiting
New York” (COCA).

Let us now create a second agent, again as
an instance of the fcg.PropBankAgent class, but
let it learn a new grammar from corpus data in-
stead of loading a pretrained one. After hav-
ing downloaded an example CoNNL file, in
which a number of English sentences are anno-

w

)

ENEN)

v

SR

tated with PropBank rolesets®, we call the agent’s

learn_grammar_from_conll_file method. This

call initiates the learning process implemented by

the fcg-propbank subsystem and equips the agent

with the resulting grammar. In this case, the agent

has learnt two lexical constructions (for verbs with

the lemmas give and send), two word sense con-

structions (for the rolesets give.@1 and send. 1),

and two argument structure constructions (a dou-

ble object construction and a prepositional dative

construction).

>>> pb_learner = fcg.PropBankAgent ()

>>> f = fcg.load_resource('pb-

annotations.conll')
>>> pb_learner.
learn_grammar_from_conll_file(f)

>>> pb_learner

<Agent: (id: agent-2) ~ 6 cxns>

>>> list(pb_learner.grammar.cxns.keys())

['give(v)-cxn', 'send(v)-cxn',
‘'give.@1-cxn', 'send.0@1-cxn',
"arg@(np)+v(v)+arg2(np)+argl (np)-cxn',
'arg@ (np)+v(v)+argl (np)+arg2(pp)-cxn']

We can now instruct our agent to comprehend
a previously unseen utterance, using the grammar
it just learnt, by calling its comprehend method.
While comprehending “The King of the Belgians
sent a box of chocolates to Forrest Gump.”, the
agent identifies an instance of the send. @1 (‘give’)
roleset, with “The King of the Belgians” as the
‘sender’ (arg0), “a box of chocolates” as the ‘thing
sent’ (argl) and “fo Forrest Gump” as the ‘sent-to’
entity (arg2).
>>> pb_learner.comprehend(”"The King of

the Belgians sent a box of
chocolates to Forrest Gump.")

[{'roleset': 'send.01',
'roles': [('v', "sent"),
('argd', "The King of the Belgians"),
('argl', "a box of chocolates”),
('arg2', "to Forrest Gump")]1}]

After learning a grammar, it can be saved by
calling the save_grammar_image method of the
fcg.Agent class. This method saves the gram-
mar to a file in a compiled, binary format that
can later efficiently be loaded using an agent’s
load_grammar_image method.
>>> propbank_agent.save_grammar_image ('

usage -based-grammar.store')
>>> new_agent = fcg.PropBankAgent ()

>>> new_agent.load_grammar_image ('usage -
based-grammar.store')

8Due to licensing restrictions, we are not able to provide
large PropBank-annotated corpora as downloadable PyFCG
resources. We invite interested readers to obtain such corpora
(e.g. OntoNotes or EWT) directly from the Linguistic Data
Consortium.

4

&~

1
S
3
4
5

<Agent: (id: agent-3) ~ 6 cxns>

4.3 Modelling emergent communication

The final walkthrough tutorial exemplifies the pri-
mary use case of FCG: implementing the linguistic
capability of autonomous agents in agent-based
models of emergent communication. In such ex-
periments, agents start out with an empty grammar
and gradually build up their linguistic knowledge
as they take part in situated communicative inter-
actions with other agents in the population. This
tutorial presents a PyFCG-powered implementation
of the canonical naming game experiment (Steels,
1996; Van Eecke et al., 2022), in which a popula-
tion of agents converges on a naming convention
used to refer to objects in their environment. The
choice for the naming game was made for didactic
reasons, as implementations of language games in-
volving the emergence of more complex grammars,
where the use of a framework like FCG truly comes
to its own, soon become strenuous to read through.
A first step in setting up a language game ex-
periment concerns the creation of a population of
agents. We define our agents as instances of a
new class NGAgent that subclasses from PyFCG’s
fcg.Agent class. The agents are thereby initialised
with an empty grammar and inherit a collection
of methods for interacting with instances of the
fcg.Grammar and fcg.Construction classes.

class NGAgent(fcg.Agent):

3 >>> NGAgent ()

<Agent: agent (id: agent-1) ~ @ cxns>

We also define a new experiment class
NGExperiment. Upon initialisation, a population
is created as a set of NGAgent instances, and a
world is created as a set of abstract objects. Two
methods are also associated to this class. The
run_interaction method (cf. below) initiates a
new communicative interaction as an instance of
the NGInteraction class, makes the interaction
happen, and records its outcome. The run_series
method runs a given number of interactions.

class NGExperiment():
def __init__(self, configuration={}):

self.world =

['obj-%d' % i for i in range(
configuration['nr_of_objects'])]

self.population =

[NGAgent () for i in range(
configuration['nr_of_agents'])]

def run_interaction(self):

10
11
12
13
14
15
16
17
18

1

ci =
ci.
ci.
ci.
ci.

NGInteraction(self)
interact ()
record_communicative_success ()
record_lexicon_size ()
record_conventionality ()

def run_series(self, nr_interactions):
for i in range(nr_interactions):
self.run_interaction()

The interact method of the NGInteraction
class defines the script according to which each
communicative interaction takes place. A randomly
selected agent, the speaker, formulates an utterance
to draw the attention of another randomly selected
agent, the hearer, to a randomly selected object in
the environment, the topic. If there exists no con-
struction in the speaker’s grammar that associates
a name with the topic object, the speaker calls its
learn method to invent such a construction. The
hearer then calls its comprehend method to retrieve
the topic object in the environment, and its learn
method in case it could not understand. The agents
achieve communicative success if the hearer could
identify the topic object, and both agents will pos-
itively or negatively reward their constructions at
the end of the interaction, based on its outcome.

class NGInteraction():

def interact(self):
s = self.speaker
h = self.hearer
s.utterance = s.formulate(s.topic)
if s.utterance is None:
s.learn(fcg.generate_word_form(), s.
topic)
if h.comprehend(s.utterance) is None:
h.learn(s.utterance, s.topic)
else:
s.communicated_successfully True
h.communicated_successfully True
for agent in self.interacting_agents:
agent.reward()

The comprehend, formulate and reward meth-
ods, as implemented for the NGAgent, illustrate
how high-level PyFCG functionality facilitates the
implementation of language game experiments.
Not only do comprehend and formulate return
the highest-scored solution, they also yield all com-
peting solutions as a second return value. Suc-
cessfully used constructions can then be rewarded
positively through calls to their increase_score
method and their competitors can be rewarded
negatively through calls to their decrease_score
method. Constructions that reach a score of 0
can be deleted from an agent’s grammar using the
delete_cxn method.

def reward(self):

3 1500/1500 [100%]

if self.communicated_successfully:
self.applied_cxn.increase_score(0.1)
for cxn in self.competitor_cxns:
cxn.decrease_score(0.2)
if cxn.get_score() <= 0.0:
self.delete_cxn(cxn)
else:
if self.discourse_role == 'speaker':
self.applied_cxn.decrease_score(0.2)
if self.applied_cxn.get_score() <=
0.0:
self.delete_cxn(self.applied_cxn)

An experiment can be run by first creating a
new instance of the NGExperiment class and then
calling its run_series method, passing the desired
number of interactions as an argument:
>>> ng = NGExperiment ({'nr_of_agents':

10, 'nr_of_objects': 5})

>>> ng.run_series (1500)
- 33.7s (44.50/s)

The results of an experiment can be visualised
using any plotting library from Python’s exten-
sive ecosystem, such as matplotlib, seaborn
or plotly. We demonstrate here the use of
matplotlib to visualise the experiment’s dynam-
ics through graphs, where the degree of commu-
nicative success, degree of conventionality and av-
erage number of constructions are plotted in func-
tion of the number of interactions that have taken
place (see e.g. Van Eecke et al., 2022).
import matplotlib.pyplot as plt
pp = make_plot_points (MONITORS)
fig, axes = plt.subplots(len(pp.keys()))
for i, key in enumerate (pp.keys()):

ax = axes[i]
ax.plot(list(range(len(pplLkeyl))),
pplLkey]l, label=key)
ax.grid()
ax.legend()
>>> plt.show()

Running this code yields the graphs presented in
Figure 3, which show that the population indeed
converges on a naming convention with one con-
struction for each object in the world.

5 Technical Implementation

The design and technical implementation of
PyFCG has been steered by two main consider-
ations. First and foremost, the library needed to
feel ‘native’ to Python users, rather than familiar to
users already accustomed to the reference FCG im-
plementation. Second, the library needed to wrap
the reference implementation, rather than reimple-
ment the original codebase.

A crucial aspect contributing to the ‘native’ look-
and-feel of a Python library revolves around the

1.0 1
0.8
0.6

0.4 1
—— communicative_success

0.2

12 —— construction_inventory_size

10 1

1.0
0.8
0.6
0.4

0.2 4 —— conventionality

T T T T T
0 500 1000 1500 2000 2500

Figure 3: Graphs showing the dynamics of a single
run of the PyFCG-powered naming game experiment,
featuring 10 agents and 5 objects, created using the
matplotlib library.

library’s embedding in the Python ecosystem of
development tools. PyFCG is implemented as a
Python package that is distributed via the Python
Package Index (PyPI), and is hence ‘pip-installable’
on (at least) macOS, Linux and Windows. PyFCG’s
codebase is versioned using Git and distributed un-
der an open source license, with its documentation
being available via the Read the Docs platform.
Once installed, PyFCG exposes a range of high-
level functions, classes and methods that build on
common Python data structures such as objects, dic-
tionaries, lists and tuples, thereby providing a truly
‘Pythonic’ interface to FCG and ensuring maximal
compatibility with other Python libraries.

The choice to wrap the reference implementa-
tion rather than providing a reimplementation of
FCG was motivated by two main reasons. First
of all, by wrapping the original Common Lisp im-
plementation, PyFCG can leverage its optimised,
multi-threaded codebase and achieve comparable
efficiency when running FCG’s most compute-
intensive procedures. The second reason was to
avoid distributing development and maintenance
efforts over two distinct FCG implementations,
which could easily become counterproductive in

the longer term.

Technically, PyFCG provides a bridge to a
stand-alone, executable version of FCG, named
FCG Go®. Upon calling PyFCG’s init func-
tion, FCG Go is downloaded for the correct
platform (if necessary) and launched as a back-
ground process. PyFCG communicates with
this background process through HTTP requests,
and thereby has access to the complete API
of the reference implementation, as well as
to its compiled codebase. When instances of
PyFCG’s Grammar and Construction classes are
created, corresponding objects are instantiated
in the FCG Go subprocess. Calls to methods
that modify objects of these classes, such as
Agent.add_cxn and Construction.set_score,
modify their Python representation at the PyFCG
side as well as their Common Lisp representa-
tion at the FCG Go side. Calls to functions and
methods that more generally rely on functional-
ity implemented by the FCG reference implemen-
tation, such as fcg.start_web_interface and
Agent.comprehend are essentially rerouted to the
running subprocess. Finally, functions and meth-
ods that do not modify FCG objects and are not
compute-intensive, including those for listing an
agent’s constructions, for retrieving the scores of
constructions, and for inspecting their internal rep-
resentations, only involve objects on the Python
side.

Crucially, the architecture of PyFCG ensures that
its users do not notice that the library interfaces
with a non-Python subprocess. The subprocess is
automatically launched when the library is initi-
ated, without the need to install a Common Lisp
environment or any other dependencies. PyFCG’s
public interface is defined in terms of Pythonic data
structures, any errors that would arise in the Com-
mon Lisp subprocess are caught and transposed
to Python Exceptions (subclass FcgError), and
the subprocess itself is safely closed by a clean-up
method when Python exits.

6 Conclusion

This paper has presented PyFCG as an open
source software library that ports Fluid Construc-
tion Grammar to the Python programming lan-
guage. PyFCG is publicly distributed as a pip-
installable Python package, and provides a fully
Pythonic interface to FCG’s reference implemen-

“https://gitlab.ai.vub.ac.be/ehai/fcg-go

tation. The library thereby enables its users to
seamlessly integrate constructional language pro-
cessing and learning into Python programs, and
to combine this functionality with that of other li-
braries within Python’s extensive ecosystem. At
the same time, the design of PyFCG as a wrapper
around an executable version of FCG’s Common
Lisp reference implementation, which stealthily
runs its multi-threaded and compute-intensive pro-
cedures in the background, ensures that PyFCG
can incorporate all FCG functionality and that the
community’s development and maintenance efforts
can remain united.

Apart from a general description of the library,
its motivation and its technical implementation, this
paper has presented three walkthrough tutorials that
showcase how PyFCG can be integrated in typical
use cases of FCG. The first tutorial has demon-
strated how FCG agents can be created, how they
can be equipped with a human-designed grammar,
how they can be instructed to comprehend and for-
mulate natural language utterances, and how these
processes can be visually inspected using FCG’s
web interface. The second tutorial has showcased
how FCG agents can learn grammars from seman-
tically annotated corpora, how they can use these
grammars to annotate new data, and how gram-
mars consisting of tens of thousands of construc-
tions can efficiently be saved and later reloaded
into agents. The final tutorial has demonstrated
the use of PyFCG in setting up agent-based experi-
ments on emergent communication. We have taken
the example of the canonical naming game and
shown how high-level FCG functionality can ease
the implementation of the language processing and
learning capacities of individual agents.

As we reach the end of this paper, it is useful to
remind ourselves that Fluid Construction Grammar
was conceived as an open instrument that provides
a collection of high-level building blocks for con-
structional language processing, with the goal of
supporting research and applications at the intersec-
tion of construction grammar and computational
linguistics. The walkthrough tutorials described in
this paper, along with their accompanying interac-
tive notebooks, demonstrate example usage of the
library, but are not meant to serve as guidelines or
rule book in any way. Fluid Construction Grammar
has always evolved to fit the needs of its users, and
new perspectives or use cases brought by PyFCG
users or contributors will be heartily embraced.

Acknowledgements

We would like to thank our system administrator
Frederik Himpe for his continuous, cross-platform
technical and moral support, Arno Temmerman
for his help in releasing PyFCG through PyPI and
Read the Docs, and Liesbet De Vos for designing
the beautiful FCG Go logo.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—186.

Katrien Beuls and Paul Van Eecke. 2023. Fluid
Construction Grammar: State of the art and fu-
ture outlook. In Proceedings of the First Interna-
tional Workshop on Construction Grammars and
NLP (CxGs+NLP, GURT/SyntaxFest 2023), pages
41-50. Association for Computational Linguistics.

Katrien Beuls and Paul Van Eecke. 2024. Humans learn
language from situated communicative interactions.
What about machines? Computational Linguistics,
50(4):1277-1311.

Paul Boersma and David Weenink. 2025. Praat: doing
phonetics by computer [Computer program]. Version
6.4.27, retrieved 27 January 2025.

Claire Bonial and Harish Tayyar Madabushi, edi-
tors. 2023. Proceedings of the First International
Workshop on Construction Grammars and NLP
(CxGs+NLP, GURT/SyntaxFest 2023). Association
for Computational Linguistics.

Claire Bonial and Harish Tayyar Madabushi. 2024. Con-
structing understanding: on the constructional infor-
mation encoded in large language models. Language
Resources and Evaluation.

William Croft. 2001. Radical construction grammar:
Syntactic theory in typological perspective. Oxford
University Press, Oxford, United Kingdom.

Charles J. Fillmore. 1988. The mechanisms of “con-
struction grammar”. In Annual Meeting of the Berke-
ley Linguistics Society, volume 14, pages 35-55.

Kateryna Gerasymova. 2012. Expressing grammatical
meaning with morphology: A case study for russian
aspect. In Luc Steels, editor, Computational Issues
in Fluid Construction Grammar, volume 7249 of
Lecture Notes in Computer Science, pages 91-122.
Springer, Berlin, Germany.

Adele E. Goldberg. 2003. Constructions: A new the-
oretical approach to language. Trends in Cognitive
Sciences, 7(5):219-224.

Thomas Herbst and Thomas Hoffmann. 2024. A Con-
struction Grammar of the English Language: CASA
- a Constructionist Approach to Syntactic Analy-

sis. John Benjamins Publishing Company, Amster-
dam/Philadelphia.

Thomas Hoffmann. 2018. Creativity and construc-
tion grammar: Cognitive and psychological is-
sues. Zeitschrift fiir Anglistik und Amerikanistik,
66(3):259-276.

Yannick Jadoul, Bill Thompson, and Bart de Boer. 2018.
Introducing Parselmouth: A Python interface to Praat.
Journal of Phonetics, 71:1-15.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55-60.

Vanessa Micelli. 2012. Field topology and informa-
tion structure: A case study for German Constituent
Order. In Luc Steels, editor, Computational Issues
in Fluid Construction Grammar, volume 7249 of
Lecture Notes in Computer Science, pages 178-211.
Springer, Berlin, Germany.

Thomas Moerman, Paul Van Eecke, and Katrien Beuls.
2024. Evaluating large-scale construction grammars
on the tasks of semantic frame extraction and seman-
tic role labeling. Constructions, 16(1):1-46.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71-
106.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 8026-8037. Curran Associates,
Inc.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108.

Luc Steels. 1996. Perceptually grounded meaning cre-
ation. In Proceedings of the Second International
Conference on Multi-Agent Systems, pages 338-344,
Washington, D.C., USA. AAAI Press.

Luc Steels. 2004. Constructivist development of
grounded construction grammar. In Proceedings of
the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 9—16.

https://doi.org/10.1162/coli_a_00534
https://doi.org/10.1162/coli_a_00534
https://doi.org/10.1162/coli_a_00534
https://aclanthology.org/2023.cxgsnlp-1.0/
https://aclanthology.org/2023.cxgsnlp-1.0/
https://aclanthology.org/2023.cxgsnlp-1.0/
https://doi.org/10.1007/s10579-024-09799-9
https://doi.org/10.1007/s10579-024-09799-9
https://doi.org/10.1007/s10579-024-09799-9
https://doi.org/10.1007/978-3-642-34120-5_5
https://doi.org/10.1007/978-3-642-34120-5_5
https://doi.org/10.1007/978-3-642-34120-5_5
https://doi.org/10.1016/j.wocn.2018.07.001
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.1007/978-3-642-34120-5_8
https://doi.org/10.1007/978-3-642-34120-5_8
https://doi.org/10.1007/978-3-642-34120-5_8
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14

Harish Tayyar Madabushi, Laurence Romain, Dagmar
Divjak, and Petar Milin. 2020. CxGBERT: BERT
meets construction grammar. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 4020-4032. International Committee
on Computational Linguistics.

Yu-Hsiang Tseng, Cing-Fang Shih, Pin-Er Chen, Hsin-
Yu Chou, Mao-Chang Ku, and Shu-Kai Hsieh. 2022.
CxLM: A construction and context-aware language
model. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 6361—

6369.

Paul Van Eecke. 2018. Generalisation and specialisa-
tion operators for computational construction gram-
mar and their application in evolutionary linguistics
Research. Ph.D. thesis, Vrije Universiteit Brussel,
Brussels: VUB Press.

Paul Van Eecke, Katrien Beuls, Jérome Botoko Ekila,
and Roxana Radulescu. 2022. Language games meet
multi-agent reinforcement learning: A case study for
the naming game. Journal of Language Evolution,
7(2):213-223.

Remi van Trijp. 2016. The evolution of case grammar.
Language Science Press, Berlin, Germany.

Remi van Trijp, Katrien Beuls, and Paul Van Eecke.
2022. The FCG Editor: An innovative environment
for engineering computational construction gram-
mars. PLOS ONE, 17(6):¢0269708.

Leonie Weissweiler, Nina Bobel, Kirian Guiller, San-
tiago Herrera, Wesley Scivetti, Arthur Lorenzi, Nu-
rit Melnik, Archna Bhatia, Hinrich Schiitze, Lori
Levin, Amir Zeldes, Joakim Nivre, William Croft,
and Nathan Schneider. 2024. UCxn: Typologically
informed annotation of constructions atop Univer-
sal Dependencies. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 16919-16932.

Leonie Weissweiler, Valentin Hofmann, Abdullatif Kok-
sal, and Hinrich Schiitze. 2022. The better your syn-
tax, the better your semantics? Probing pretrained
language models for the English comparative cor-
relative. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,

pages 10859-10882, Abu Dhabi.

Lvxiaowei Xu, Zhilin Gong, Jianhua Dai, Tianxiang
Wang, Ming Cai, and Jiawei Peng. 2024. CoELM:
Construction-enhanced language modeling. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 10061-10081.

10

https://doi.org/10.1093/jole/lzad001
https://doi.org/10.1093/jole/lzad001
https://doi.org/10.1093/jole/lzad001
https://doi.org/10.1371/journal.pone.0269708
https://doi.org/10.1371/journal.pone.0269708
https://doi.org/10.1371/journal.pone.0269708
https://aclanthology.org/2024.lrec-main.1471/
https://aclanthology.org/2024.lrec-main.1471/
https://aclanthology.org/2024.lrec-main.1471/
https://doi.org/10.18653/v1/2022.emnlp-main.746
https://doi.org/10.18653/v1/2022.emnlp-main.746
https://doi.org/10.18653/v1/2022.emnlp-main.746
https://doi.org/10.18653/v1/2022.emnlp-main.746
https://doi.org/10.18653/v1/2024.acl-long.542
https://doi.org/10.18653/v1/2024.acl-long.542

	Fluid Construction Grammar
	FCG in Python, Really?
	FCG in Python, Finally!
	PyFCG at Work
	Grammar formalisation and testing
	Learning grammars from corpora
	Modelling emergent communication

	Technical Implementation
	Conclusion

