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Abstract
This paper introduces a novel approach to visual dialogue that is based on neuro-
symbolic procedural semantics. The approach builds further on earlier work on
procedural semantics for visual question answering and expands it with neuro-symbolic
mechanisms that handle the challenges that are inherent to dialogue, in particular the
incremental nature of the information that is conveyed. Concretely, we introduce (i) the
use of a conversation memory as a data structure that explicitly and incrementally rep-
resents the information that is expressed during the subsequent turns of a dialogue, and
(ii) the design of a neuro-symbolic procedural semantic representation that is grounded in
both visual input and the conversation memory. We validate the methodology using the
MNIST Dialog and CLEVR-Dialog benchmark challenges and achieve a question-level
accuracy of 99.8% and 99.2% respectively. The methodology presented in this paper
contributes to the growing body of research in artificial intelligence that tackles tasks
that involve both low-level perception and high-level reasoning using a combination of
neural and symbolic techniques. It thereby leads the way towards the development of
conversational agents that will be able to hold more explainable, natural and coherent
conversations with their human interlocutors.

Introduction
Visual dialogue refers to the task in which an artificial agent and a human hold a meaningful
and coherent conversation that is grounded in visual input [1]. Typically, an agent needs to
answer a sequence of questions about a given image, where the questions can only be under-
stood in relation to previous question-answer pairs. In many respects, the task of visual dia-
logue is similar to the task of visual question answering [2], with the additional difficulty that
the question-answer pairs are not independent from each other.

A schematic depiction of a typical visual dialogue task is shown in Fig 1. In this example,
an agent is presented with the image on the left, and needs to answer the sequence of ques-
tions Q1 to Q4 on the right. The four question-answer pairs constitute a coherent dialogue, in
which Q1 (‘Are there any triangles?’) can be answered based on the image alone, but in which
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Fig 1. Schematic representation of a typical visual dialogue task. In this task, an artificial agent needs to answer a
sequence of follow-up questions about an image.

https://doi.org/10.1371/journal.pone.0323098.g001

Q2 to Q4 (‘How many?’, ‘Is there an object to its left?’, ‘What is its colour?’) can only be answered
based on the combination of the image and the previous question-answer pairs.

In this paper, we introduce the use of neuro-symbolic procedural semantic representa-
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tions for solving visual dialogue tasks. We build further on earlier work in the area of visual
question answering, in which procedural semantic representations, as pioneered by amongst
others [3], [4] and [5], have already been successfully used for representing the meaning of
questions in the form of executable queries [6–8]. Such procedural semantic representations
capture the logical structure underlying a question, and can be executed on a given image to
compute an answer.

An example of a procedural semantic representation for the question ‘Are there more
squares than circles?’, asked about the image in Fig 1, is shown in Fig 2. The query is com-
posed of six operations that need to be performed by an artificial agent in order to retrieve the
answer to the question. First of all, the segment-scene operation segments the image that it
received as input (bound to the variable ‘?scene’) and binds the set of foreground objects to
the ‘?segmented-scene’ variable. Then, two filter operations take this set of objects as input
and bind the set of squares and the set of circles to the variables ‘?squares’ and ‘?circles’ respec-
tively. Then, the set of squares and the set of circles are counted by count operations and the
cardinality of each set is computed. Finally, the greater-than operation checks whether the
cardinality of the first set is larger than the cardinality of the second set. The result of this last
operation (in this case no) is at the same time the answer to the question as a whole.

The operations, which are also called primitive operations or primitives, correspond to
atomic actions that an artificial agent can perform. Depending on the techniques used for
implementing these operations, procedural semantic representations can be subsymbolic, cf.
the neural module networks used by [6], or symbolic, cf. the set operations used by [9]. In this
paper, we combine the strengths of both subsymbolic and symbolic operations through the
introduction of neuro-symbolic procedural semantic representations (cf. [10]).

When moving from visual question answering to visual dialogue, the two-step process of
first mapping a question to its logical structure and then executing the corresponding query
on an image becomes more challenging. As individual questions are no longer independent
from each other, they no longer map onto queries that are directly executable on an image
alone. For example, in the question ‘What is its colour?’, the possessive anaphoric pronoun
“its” refers to an object that was introduced by an earlier question-answer pair, and which
must be retrieved in order to be able to answer the question. As opposed to visual question
answering systems, visual dialogue systems thus need to be able to keep track of the informa-
tion that has been conveyed during earlier dialogue turns, as well as to use this information
for answering questions in later turns.

In order to overcome this challenge, we introduce the use of a conversation memory as a
data structure that explicitly and incrementally stores the information that is expressed in
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Fig 2. Example of a procedural semantic representation for the question ‘Are there more squares than circles?’,
executed on the image in Fig 1. The answer to the question given this image is no.

https://doi.org/10.1371/journal.pone.0323098.g002

the subsequent turns of a dialogue. Additionally, we present a procedural semantic repre-
sentation for visual dialogue tasks, which is able to query both visual input and the conver-
sation memory. Due to its neuro-symbolic nature, this semantic representation can exploit
the strengths of both subsymbolic systems for interacting with perceptual data, in this case
the image, and of symbolic systems for reasoning based on previously acquired knowledge,
in this case by retrieving structured information from the conversation memory. The evalu-
ation of our novel methodology on the standard MNIST Dialog benchmark [11] and the more
challenging CLEVR-Dialog benchmark [12] shows that through the introduction of a conver-
sation memory and the design of a compatible neuro-symbolic procedural semantic represen-
tation, we have been able to transfer the success of using procedural semantics in the field of
visual question answering to the much more challenging field of visual dialogue.

By presenting a methodology that tackles visual dialogue tasks by reasoning over both
structured (memory) and unstructured (image) data, this paper contributes to the growing
body of research in artificial intelligence that tackles tasks that involve both low-level percep-
tion and high-level reasoning using a combination of neural and symbolic techniques [10,13,
14]. It thereby bears the promise of leading to the development of artificial agents with more
explainable, consistent and human-like cognitive capacities. This paper is supplemented by an
interactive web demonstration accessible at https://ehai.ai.vub.ac.be/demos/visual-dialog. A
conference paper reporting on the results discussed in this paper was previously published as
[15].

Background and related work
This section sketches the background and prior work that forms the backbone of the research
reported on in this paper. In particular, we focus on the state of the art in the fields of visual
dialogue and procedural semantics.
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Visual dialogue
Agents holding coherent conversations with humans about the scenes they observe has
been a central topic in the field of artificial intelligence since its inception in the 1950s, with
SHRDLU [3] and Shakey [16] being the most notable early systems developed. More recently,
also the machine learning community has become increasingly interested in the topic of arti-
ficial agents holding coherent conversations with humans about visual content. This has led
to the establishment of the standardised task of visual dialogue as introduced by [1], and sub-
sequently to a number of dedicated datasets and benchmark challenges, including VisDial
[1], MNIST Dialog [11] and CLEVR-Dialog [12]. The task of visual dialogue can be seen as
an extension of the task of visual question answering [2]. While both tasks involve answer-
ing questions about images, the questions in a visual dialogue task are organised in a coherent
conversation and can involve reference to entities introduced by earlier question-answer pairs.
The additional challenge faced by visual dialogue systems amounts thus to taking into account
earlier dialogue turns when answering later questions.

The state of the art in visual dialogue is dominated by attention-based neural network
approaches, which mainly differ in how they deal with co-references between question-
answer pairs. In general, these approaches use an encoder-decoder architecture [17], which
learns to attend to those regions of the image and/or previous question-answer pairs that are
most relevant to answering a given question. [1] introduce encoders based on late fusion,
hierarchical encoding [18] and memory networks [19]. These encoders encode the ques-
tion, textual history and image, and identify those parts of the textual history that are most
relevant to answering the question. A discriminative decoder can then be used to rank can-
didate answers, or a generative decoder can be used to produce an answer. [20] present
history-conditioned image attentive encoders which do not only encode the question, tex-
tual history and entire image, but also attend over specific regions in the image that played a
role in the dialogue history. [21] integrate answer options as early input to the model, as to
maximally exploit their informativeness. Building further on this approach, [22] introduce
a two-stage process, in which the candidate answers are first scored by a co-attention net-
work. This ranking is then passed as input to a second co-attention network during a so-called
synergistic stage. [23] propose a co-attention encoder which jointly reasons over the input
image, the question and the previous question-answer pairs. This encoder is in turn part of
a larger architecture for adversarial learning, which learns to approximate human answers
using a reinforcement learning-based discriminator. [24] extend this work by presenting a
more general co-attention-based model that can include any number of input modalities. [25]
propose the use of dual attention networks for resolving visual co-references. Linguistic co-
references are resolved by a first attention module, and the corresponding entities are then
grounded in the image by a second attention module. [26] introduce a recurrent dual atten-
tion network that performs multi-step reasoning, integrating visual and textual reasoning in
an iterative process. [27] introduce an algorithm that recursively traverses earlier question-
answer pairs based on co-references, in order to retrieve visual attentions for the relevant
entities. [28] propose a graph neural network approach to visual dialogue, where the nodes
are dialogue turns and the edges represent co-reference links between these turns. Answer-
ing a question amounts then to inferring unknown node values. [29] present a history-aware
co-attention network that is robust against imperfect history input. Their learning approach,
called history-advantage sequence training, is inspired by actor-critic methods in reinforce-
ment learning in the sense that it includes an adversarial critic which intentionally introduces
wrong answers with the goal of improving robustness. [30] propose a weighted likelihood esti-
mation method for training generative decoders, with the goal of making them less biased
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towards frequent answers such as ‘I don’t know’. [31] integrate pre-trained BERT language
models into a transformer-based encoder. [32] extend this approach by integrating soft lin-
guistic constraints, encoding preference for specific part-of-speech tags and closeness between
pronouns and their antecedents.

A next line of research focuses on more explicitly keeping track of the entities that were
evoked in earlier dialogue turns, both visually and textually, and on resolving co-references
and ambiguities with respect to these entities. Starting from the observation that the propor-
tion of follow-up questions with non-trivial co-references in existing visual dialogue datasets,
in particular VisDial, is limited [33,34], [11] introduce the MNIST Dialog dataset with the
specific purpose of evaluating to what extent visual dialogue models are actually capable of
reasoning about previously introduced discourse entities. MNIST Dialog is characterised by a
large proportion of interdependent questions that are highly ambiguous with respect to syn-
thetically generated scenes, unless co-references are adequately resolved. As the scenes and
questions are bias-free, the questions cannot be answered without reasoning about both the
scene and dialogue history. In the same paper, the authors introduce a model that explicitly
represents the dialogue history as a combination of previous question-answer pairs and their
associated attentions, and is able to retrieve the relevant attention for a given question from
this associative memory. Building further on this work, [35] also represent the dialogue his-
tory in the form of an associative memory, but the keys are here more fine-grained entity-level
descriptions instead of question-answer pairs. The authors introduce a neural module net-
work architecture [36] in which the meaning representation includes two dedicated modules
(refer and exclude) for interacting with the associative memory. [37] extend [35]’s model
with a separate treatment of personal and impersonal pronouns. [12] introduce the CLEVR-
Dialog dataset for studying and benchmarking multi-turn reasoning in visual dialogue. This
dataset was developed as a more challenging alternative to MNIST Dialog, where questions
cannot only depend on the previous question-answer pair, but also on any combination of
earlier question-answer pairs. [38] introduce three extensions of memory, attention and com-
position (MAC) networks [39] that deal with the conversational nature of visual dialogue
tasks. A first extension consists in passing information across dialogue turns by initialising
the memory state of the first MAC-cell of each turn with the value of the memory state of
the last MAC-cell of the previous turn. A second extension concerns a context-aware atten-
tion mechanism that implements a transformer-like self-attention mechanism on the previ-
ous control states. A final extension consists in appending the entire dialogue history to the
current question. They report that all three techniques lead to important improvements with
respect to the state of the art. [40] present a neuro-symbolic approach that combines deep
learning and symbolic program execution for tackling visual dialogue tasks and demonstrate
their methodology on the CLEVR-Dialog dataset. Their method relies on a pre-trained Mask
R-CNN [41] to convert the dataset’s images to symbolic scene graphs (similar to work on the
CLEVR benchmark by [42]), which they combine with a symbolic program executor and a
dynamic knowledge base to keep track of the previously mentioned entities.

Procedural semantics
Procedural semantic representations, as pioneered by [43], [3] and [5], capture the mean-
ing of linguistic expressions in the form of programs that can be executed algorithmically.
The use of procedural semantics is of particular interest to conversational agents, especially
when these agents need to be able to truly understand linguistic expressions as uttered by a
human, for example in the case of instructions to be carried out in the world or questions to
be answered in natural language. The procedural semantics paradigm was indeed the result
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of a number of ambitious research projects in this direction in the 1960s and 1970s. The
SHRDLU system [3] was able to hold coherent conversations with a human about a blocks
world. It could move blocks as instructed by the human, reason about actions and affor-
dances, and answer questions about both actions and the state of the world. SHRUDLU’s
rule-based grammar and reasoning system were not only able to understand and produce
English utterances, but could also ask for clarifications when the system was unable to disam-
biguate input utterances. The LUNAR system [4] enabled lunar geologists to query chemical
analysis data on lunar rock and soil composition using natural language, without having to
learn a formal query language or the structure of NASA’s databases. English utterances were
analysed by an augmented transition network (ATN)-based parser and then mapped onto
queries that could be executed on the databases. [44] took this approach further, by introduc-
ing semantic transition networks (STNs). As compared to ATNs, STNs are able to directly
build up a semantic representation, instead of needing to pass through an intermediate syn-
tactic structure. Since then, this pioneering work has given rise to a broad spectrum of pro-
cedural semantics-based question answering systems. While the coverage and applicability of
these systems have drastically improved over time, the conversational aspects that were once
the hallmark of SHRDLU, have gradually moved away from the focus of attention.

Over the last decades, procedural semantic representations have been extensively used
in systems for querying databases using natural language, in combination with a variety of
grammar formalisms. [45] introduce the use of an extension of definite clause grammars [46],
called extraposition grammars, to parse natural language questions into logic-based exe-
cutable queries. [47] introduce an inductive logic programming approach to learn definite
clause grammars and [48] uses definite clause grammars to parse natural language questions
into efficient datalog queries. A large body of work embraces combinatory categorial grammar
(CCG) [49] as a semantic parsing engine that maps natural language utterances onto logi-
cal forms expressed in the lambda calculus [50–56]. Other work adopts Head-Driven Phrase
Structure Grammar (HPSG) [57,58], computational construction grammar [9,59], depen-
dency parsing [36] or variations on context-free grammars [60,61]. Apart from grammar-
based approaches, also neural approaches have been used to map questions onto executable
queries, in particular using recurrent neural networks such as LSTMs [6,62–64].

When it comes to the properties of the procedural semantic representations themselves,
three different approaches can be distinguished. A first class of models represent the mean-
ing of utterances as queries expressed in a database querying language, such as SQL [63],
FunQL [64] or SPARQL [65]. The main advantage of this approach is that the expressiveness
of the semantic representation coincides with the expressiveness of the query language, and
that the semantic representations can be directly executed on a database. The main disadvan-
tages of this approach are that only questions can be represented straightforwardly and that
the structure of the queries is often far removed from the way in which information is rep-
resented in natural language. A second class of models represent the meaning of questions
using logical forms, often defined in terms of variations on the lambda calculus (see e.g. the
work cited above in the context of CCG). Such representations are more expressive, can rep-
resent more sentence types, and more closely mirror the compositional nature of linguistic
utterances. However, an additional step is needed to transform the logical forms to executable
queries. The third class of models use formalisms that were especially designed to represent
the meaning of natural language utterances using procedural semantic representations. These
formalisms typically provide a way to define so-called primitive operations, which correspond
to functions or predicates that can be implemented computationally. These primitive opera-
tions can be compositionally combined into larger programs, often called semantic networks,
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through shared input and output arguments. These programs can then be evaluated by exe-
cuting the individual primitive operations while propagating the appropriate arguments from
one operation to the other. Examples of models of this class include meaning representations
expressed in Incremental Recruitment Language (IRL) [66,67], as used for example by [68]
and [9], or the meaning representations used by [6], [69] and [70]. While the primitive oper-
ations used in these special-purpose procedural semantics languages need to be implemented
or learnt, this approach has the advantage that the languages are open-ended and directly exe-
cutable. Moreover, this means that the procedural semantic languages can be tailored towards
the task at hand, and that the primitive operations and their combination can be designed to
better reflect the compositional nature of natural language utterances.

Primitive operations in procedural semantics can be operationalised symbolically or sub-
symbolically. Subsymbolic primitives perform operations over numeric representations
such as scalars, vectors or tensors. They usually deal with the categorisation of sensor values
observed in the world, often extracted from images. Symbolic primitives on the other hand
perform operations over meaningful symbols, typically implementing higher-level reason-
ing processes. Neuro-symbolic procedural semantic systems allow to combine symbolic and
subsymbolic primitives in semantic networks. In these networks, subsymbolic primitives
typically deal with perception tasks, while symbolic primitives typically deal with reason-
ing tasks. Procedural semantic representations of all three types have been proposed. Neural
module networks have been introduced by [36] as an operationalisation of fully subsymbolic
procedural semantic representations applied to visual question answering tasks. [35] extend
this approach to visual dialogue by adding primitive operations that perform multi-turn co-
reference resolution. [42], [71] and [9] present a symbolic approach where the procedural
semantic representations are not executed on the image directly, but on a scene graph repre-
sentation that is generated first. Finally, [72] and [10] propose a neuro-symbolic procedural
semantic engine which integrates neural predicates in probabilistic logic programs and [14]
present a framework aimed at representing fully differentiable logic representations.

Methodology
Our novel approach to visual dialogue operationalises two main ideas. First, the history of a
dialogue is represented explicitly, incrementally and in a structured way. We refer to the data
structure holding this information by the term conversation memory. Second, the meaning of
linguistic utterances is represented using a neuro-symbolic procedural semantic representation
that combines subsymbolic and symbolic primitive operations.

Conversation memory
The conversation memory captures all information about the dialogue history that can be
relevant for interpreting later dialogue turns. It represents this information in an explicit,
human-interpretable way, and is incrementally extended after each dialogue turn. Per turn,
the conversation memory stores:

• a timestamp capturing the turn number.
• the utterance observed during the turn.
• the sentence type of this utterance, indicating for example the question type for ques-

tions.
• the reply that was produced, if applicable.
• the topic of the conversation from an information structure point of view.

PLOS One https://doi.org/10.1371/journal.pone.0323098 May 27, 2025 7/ 28

https://doi.org/10.1371/journal.pone.0323098


ID: pone.0323098 — 2025/5/24 — page 8 — #8

PLOS One Neuro-symbolic procedural semantics for explainable visual dialogue

• a symbolic representation of the set of all entities evoked during the dialogue up to this
turn, including all their properties that were mentioned.

• for each entity, a pointer to an attention over the image that highlights its grounding in
the input.

As an example, Fig 3 shows the state of the conversation memory after processing the dia-
logue introduced in Fig 1. For now, we only briefly introduce the conversation memory data
structure. In the first turn, the question ‘Are there any triangles?’ of type Question-Exist is
observed and the answer ‘Yes’ is returned. The topic of the conversation at this point is the
entity ‘object-1’. Both the grounding of entity ‘object-1’ in the input image and its mentioned
shape property are stored in the conversation memory. In the second turn, the question ‘How
many?’ of type Question-Count is asked about the current topic of the conversation and
the answer ‘One’ is returned. The topic of the conversation does not change and no addi-
tional information is added. In the third turn, the question ‘Is there an object to its left?’ of type
Question-Exist is processed and the answer ‘Yes’ is returned. A new entity ‘object-2’ is added
to the conversation memory with as only information its grounding in the input image. The
topic of the conversation now shifts to entity ‘object-2’. Finally, at the fourth turn, the question
‘What is its colour?’ is processed. The topic of the conversation, namely ‘object-2’, is inferred
from the previous turn and the answer ‘Red’ is returned. The colour property of ‘object-2’ is
added to the representation of this entity in the conversation memory.

Fig 3. Schematic representation of the conversation memory after the fourth turn of the dialogue sketched in Fig 1. The conversation memory is
incrementally updated after each dialogue turn as new information becomes available.

https://doi.org/10.1371/journal.pone.0323098.g003
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In general, the conversation memory should store after each dialogue turn all discourse
information that might be relevant for interpreting later dialogue turns. The information that
we include in our implementation of the conversation memory reflects the information that
is relevant in the visual dialogue tasks that we tackle in this paper. We do not claim in any way
that this information is sufficient to model everyday conversations between human interlocu-
tors, which fall outside the scope of these benchmark challenges. Indeed, further research in
pragmatics is needed in order to construct more accurate models of the role that discourse
information plays in human conversation.

Neuro-symbolic procedural semantics
In tandem with the conversation memory, we introduce a neuro-symbolic procedural seman-
tic representation that is designed to represent the meaning of utterances in their discourse
context. The set of primitive operations that is part of our semantic representation is an exten-
sion of the set of predicates used in the annotation of the CLEVR VQA dataset [69]. On the
one hand, this extension was made for the procedural semantic representation to be applica-
ble to a larger number of datasets, and on the other hand to be able to deal with the conversa-
tional aspects of dialogue through the consultation of information stored in the conversation
memory.

Our neuro-symbolic procedural semantic representation combines subsymbolic primi-
tives that implement operations over unstructured data, in particular input images or atten-
tions, with symbolic primitives that implement operations over structured data, in particu-
lar information contained in the conversation memory. Primitives that can operate on both
structured and unstructured input have both a symbolic and a subsymbolic implementa-
tion. At runtime, the adequate implementation is then chosen based on the type of the input
arguments.

The neuro-symbolic procedural semantic representation makes use of 16 primitive opera-
tions, which can combine to represent the meaning of statements and questions about objects
in an image. The statements and questions can be about the existence and number of objects
in the image, their attributes and the spatial relationships between the objects. The primitive
operations are defined and implemented as described below. A schematic representation of
the internal architecture of each primitive operation is also provided in Fig 4 and an overview
of the different primitive operations as categorised by their symbolic or subsymbolic nature is
shown in Table 1.

• The segment-scene(?segmented-scene, ?scene) primitive operation binds a segmen-
tation of the input image bound to ‘?scene’ to the ‘?segmented-scene’ variable, i.e. a set of
attentions in which each attention highlights one of the objects in the image. This prim-
itive operation is implemented subsymbolically as a Mask R-CNN-based neural net-
work that performs instance segmentation [41]. The segment-scene primitive is used
in the representation of the meaning of each statement or question about an image. For
example, it serves as a starting point for computing an answer to the question ‘Are there
any green cylinders?’.

• The filter(?target-set, ?source-set, ?scene, ?category) primitive operation binds
‘?target-set’ to the set of all instances of ‘?category’ present in ‘?source-set’. ‘?category’
needs to be bound to a conceptual category to filter by, such as ‘green’, ‘cube’ or ‘large’.
The filter operation is implemented both symbolically and subsymbolically. The sym-
bolic implementation is used to filter entities from the conversation memory by binding
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Fig 4. Schematic representation of the implementation of the primitive operations.

https://doi.org/10.1371/journal.pone.0323098.g004
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Table 1. Overview of primitive operations categorised by their symbolic or subsymbolic implementation.
Symbolic Subsymbolic
filter filter
unique segment-scene
count relate
exist extreme-relate
more-than-one immediate-relate
exist-or-count query
get-topic
get-previous-topic
get-attribute-category
find-in-scene
set-difference

https://doi.org/10.1371/journal.pone.0323098.t001

the set of all entities from the ‘?source-set’ set that have ‘?category’ among their sym-
bolic attributes to ‘?target-set’. The subsymbolic implementation classifies each atten-
tion in ‘?source-set’ according to whether it fits best the class ‘?category’ in ‘?scene’ or a
different class of the same attribute category. The set of attentions that are predicted to
belong to class ‘?category’ are bound to ‘?target-set’. This classification process is imple-
mented on top of the shared inventory of neural modules discussed later in this section.
The subsymbolic implementation of the filter primitive is for example used to compute
the set of green objects when processing the utterance ‘Are there any green objects?’. The
symbolic implementation is for example used to compute the set of green objects when
processing the utterance ‘How many cubes are there among the aforementioned green
objects?’.

• The relate(?target-set, ?source-object, ?segmented-scene, ?scene, ?spatial-
relation) primitive operation binds ‘?target-set’ to the set of all attentions in
‘?segmented-scene’ for which ‘?spatial-relation’ holds with respect to ‘?source-object’. For
example, if ‘?spatial-relation’ is bound to ‘right’, ‘?target-set’ will be bound to the set of
all attentions over objects that are located to the right of ‘?source-object’. This primi-
tive operation is implemented on top of the shared inventory of neural modules dis-
cussed later in this section. It classifies each attention in ‘?segmented-scene’ according to
whether it is ‘?spatial-relation’ with respect to ‘?source-object’ in ‘?scene’. The primitive
is used for example to compute the set of objects located to the right of a green sphere
when processing the utterance ‘How many objects are to the right of the green sphere?’.

• The extreme-relate(?target-object, ?source-set, ?scene, ?spatial-direction)
primitive operation binds ‘?target-object’ to the attention in ‘?source-set’ over the object
that is located most towards the spatial direction described by ‘?spatial-direction’. For
example, if ‘?spatial-direction’ is bound to ‘right’, ‘?target-object’ will be bound to the
attention over the rightmost object present in ‘?source-set’. This primitive operation
is implemented on top of the shared inventory of neural modules discussed later in
this section. The primitive is used for example to compute the rightmost object when
processing the utterance ‘What is the colour of the rightmost object?’.

• The immediate-relate(?target-object, ?source-object, ?segmented-scene,
?scene, ?spatial-relation) primitive operation binds ‘?target-object’ to the attention
in ‘?segmented-scene’ over the object in ‘?scene’ that is located most closely to ‘?source-
object’ according to ‘?spatial-relation’. For example, if ‘?spatial-relation’ is bound to
‘right’, ‘?target-object’ will be bound to the attention over the object in ‘?scene’ that is
located most closely to the right of ‘?source-object’. This primitive operation is imple-
mented on top of the shared inventory of neural modules discussed later in this section.
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The primitive is used for example to compute the object that is located most closely to
the right of the green sphere in the utterance ‘What is the shape of the object right of the
green sphere?’.

• The unique(?target-object, ?source-set) primitive operation checks whether the
set bound to ‘?source-set’ contains only one attention. If this is the case, it binds ‘?target-
object’ to this attention. If ‘?source-set’ is empty, the primitive signals failure. If ‘?source-
set’ contains more than one attention, it triggers a search process with as many branches
as there are attentions in ‘?source-set’. Each attention in ‘?source-set’ is bound to ‘?target-
object’ in exactly one branch with the average confidence score of the attention accu-
mulated over any previous primitives taken as the heuristic value of the branch. The
unique primitive is implemented through symbolic set operations. It is for example
used for processing utterances that contain articles, such as ‘What is the material of the
green sphere?’ or ‘There is a green object left of a red object.’.

• The query(?target-category, ?source-object, ?scene, ?attribute-category)
primitive operation queries the ‘?attribute-category’ of ‘?source-object’ and binds the
resulting value to ‘?target-category’. ‘?attribute-category’ needs to be bound to the name
of an attribute category, such as ‘shape’, ‘colour’ or ‘size’. The resulting values are con-
ceptual categories such as ‘block’, ‘red’ or ‘large’. This primitive operation is imple-
mented on top of the shared inventory of neural modules discussed later in this section.
Based on ‘?attribute-category’ (e.g. size), a subset of binary classifiers associated to this
‘?attribute-category’ is selected (e.g. large, small). The category associated to the binary
classifier yielding the highest confidence score (for a positive result) is bound to ‘?target-
category’. The query primitive is used to query properties of objects, for example the
material of the green sphere in the utterance ‘What is the material of the green sphere?’.

• The count(?target-number, ?source-set) primitive operation binds the cardinality
of ‘?source-set’ to ‘?target-number’. This primitive operation is implemented through a
symbolic set operation. An example utterance that requires the count primitive is the
question ‘How many spheres are there?’.

• The exist(?target-boolean, ?source-set) primitive operation checks whether the set
bound to ‘?source-set’ contains at least one element. If so, ‘?target-boolean’ is bound to
‘yes’, otherwise to ‘no’. This primitive operation is implemented through symbolic set
operations. An example of an utterance requiring the exist primitive is the question
‘Are there any spheres?’.

• The more-than-one(?target-boolean, ?source-set) primitive operation checks
whether the set bound to ‘?source-set’ contains multiple elements (i.e. at least two). If so,
‘?target-boolean’ is bound to ‘yes’, otherwise to ‘no’. This primitive operation is imple-
mented through symbolic set operations. An example of an utterance that requires the
more-than-one primitive is the statement ‘There are multiple spheres in the image.’.

• The exist-or-count(?target, ?source-set, ?conversation-memory) primitive
operation calls either the exist primitive operation or the count primitive operation
on ‘?source-set’ and binds the result to ‘?target’. Whether the exist or count operation
is called, depends on the sentence type of the previous turn in ‘?conversation-memory’.
This primitive operation is implemented through symbolic operations on the conver-
sation memory and through calls to other primitive operations. For example, if a ques-
tion ‘and to its right?’ follows a count-type question such as ‘How many objects are there
to the left of the green cube?’, the count primitive will be used to count the objects to
the right of the green cube. If the same question follows an exist-type question such as
‘Are there any objects to the left of the green cube?’, the exist primitive will be called to
determine whether there are any objects to the right of that green cube.
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• The get-topic(?target-topic, ?conversation-memory) primitive operation binds
‘?target-topic’ to the current topic of the conversation as stored in ‘?conversation-
memory’, i.e. the set of objects that is the topic of the conversation after processing
the previous turn. This primitive operation is implemented symbolically. It is used
to resolve anaphora in questions such as ‘and its colour?’, following questions such as
‘What is the shape of the small object left of the green cube?’, which shifted the topic to the
small object left of the green cube.

• The get-previous-topic(?target-topic, ?conversation-memory) primitive opera-
tion binds ‘?target-topic’ to the previous topic of the conversation, i.e. the set of objects
that was the topic before processing the last turn. This primitive operation is imple-
mented symbolically. It is used to resolve anaphora in questions such as ‘and to its left?’
following questions such as ‘Are there any objects to its right?’, which follow themselves
questions such as ‘Is there a green cube?’. In this case, the question ‘and to its left?’ refers
to the green cube and not to the objects to the right of the green cube.

• The get-attribute-category(?target-category, ?conversation-memory) prim-
itive operation binds ‘?target-category’ to the attribute category that was queried most
recently in the conversation. This primitive operation is implemented symbolically and
is used to resolve anaphora in utterances such as ‘and that of the green sphere?’ following
utterances such as ‘What is the material of the grey cylinder?’.

• The find-in-scene(?target-object-set-scene, ?source-object-set-scene,
?source-object-set-memory) primitive operation relates one or more objects from
the conversation memory with their counterparts in the input image. Concretely, this
operation takes as input a set of entities stored in the conversation memory, bound
to ‘?source-object-set-memory’, and the attentions bound to ‘?source-object-set-scene’. It
then finds the attentions of the entities from the conversation memory in the scene and
binds this set to ‘?target-object-set-scene’. This primitive is implemented symbolically
as a straightforward lookup function. The find-in-scene primitive is used to resolve
anaphora in utterances such as ‘What is its material?’ following utterances such as ‘Is
there a green cube?’. Here, the find-in-scene primitive relates the representation of the
green cube as retrieved from the conversation memory with the green cube as observed
in the image.

• The set-difference(?target-object-set-scene, ?source-object-set-scene,
?source-object-set-memory) primitive operation binds ‘?target-object-set-scene’ to
the subset of ‘?source-object-set-scene’ that contains all attentions over objects that are
not part of ‘?source-object-set-memory’. It does this by first using the find-in-scene prim-
itive to retrieve the attentions over the objects in ‘?source-object-set-memory’ and then
subtracting these from ‘?source-object-set-scene’. This primitive is implemented through
symbolic functions. The set-difference primitive is used to process utterances that
explicitly refer to objects that were not previously mentioned, for example in the utter-
ance ‘Are there other objects sharing its colour?’. Here, the word ‘other’ refers to the set of
objects in the scene that do not appear in the conversation memory.

The subsymbolic primitive operations that query attributes of objects (query), that fil-
ter objects based on their attributes (filter), and that spatially relate objects to each other
(relate, extreme-relate and immediate-relate) are all implemented on top of a shared
inventory of neural modules. These modules are implemented as binary classifiers that are
trained to predict whether a specific conceptual categorisation holds for a given object or set
of objects in a scene. They should be interpreted as atomic distinctions that underlie the con-
ceptual reasoning of an agent operationalised through a variety of primitive operations. Using
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a shared inventory of highly-specialised neural modules across different primitive operations,
as opposed to training a dedicated neural module for each subsymbolic primitive operation,
has two main advantages. First, it enhances the consistency of the overall reasoning process,
as the different reasoning steps make use of the same conceptual representations and infer-
ences. Second, it facilitates the addition of new primitive operations as they can maximally
reuse cognitive capacities that have previously been acquired. All binary classifiers are con-
volutional neural networks that adopt the SqueezeNet architecture [73]. An overview of the
neural modules is shown in Table 2 and full details on their implementation and evaluation
are provided in the appendix of this paper.

Extending the conversation memory
The conversation memory is extended with new information after each dialogue turn. Con-
cretely, after each turn, a new turn representation is created for the current timestep (see the
four boxes in Fig 3). The timestep, utterance and reply slots of the turn representation are
straightforwardly filled based on the available information. The sentence type is inferred from
the final primitive operation executed during the evaluation of the semantic network for the
current utterance. The topic corresponds to the set of objects that was bound to the input
argument of the same primitive operation call. Finally, entities are added or updated based on
the properties of the objects that were mentioned during the current turn.

For example, in the first turn of Fig 3, the question ‘Are there any triangles?’ is asked and
the response is ‘Yes’. It can be inferred that the question is of type Question-Exist based on
the fact that the semantic network representing the meaning of the question ends with the
exist primitive (the semantic network is not shown in the figure). The topic corresponds to
the set containing the only triangle that was present in the input image, and which served as
the input set to be processed by the exist primitive. A representation of this object is added
to the list of entities with its mentioned ‘triangle’ property and an attention that grounds
the object in the image. In the third turn, the question ‘Is there an object to its left?’ of type
Question-Exist is asked and the answer ‘Yes’ is returned. The topic now shifts to the set con-
taining the only object that was to the left of the previous topic, as this was the input to the
exist primitive. No information apart from its grounding in the world is added to the entity
representation, as no additional information was mentioned. In the final turn, the question

Table 2. Overview of the shared inventory of neural modules on top of which the subsymbolic primitive oper-
ations are built. All modules are implemented as binary classifiers adopting the SqueezeNet architecture
[73].
colour-blue? relate-behind? extreme-relate-right? style-stroke?
colour-red? relate-left? extreme-relate-front? style-flat?
colour-brown? relate-right? extreme-relate-middle? number-0?
colour-green? relate-front? size-small? number-1?
colour-cyan? immediate-relate-behind? size-large? number-2?
colour-gray? immediate-relate-left? bgcolour-white? number-3?
colour-purple? immediate-relate-right? bgcolour-cyan? number-4?
colour-yellow? immediate-relate-front? bgcolour-salmon? number-5?
colour-violet? immediate-relate-above? bgcolour-silver? number-6?
shape-cube? immediate-relate-below? bgcolour-yellow? number-7?
shape-cylinder? extreme-relate-behind? material-metal? number-8?
shape-sphere? extreme-relate-left? material-rubber? number-9?

https://doi.org/10.1371/journal.pone.0323098.t002
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‘What is its colour?’ of type Question-Query is asked and the answer Red is given. The prop-
erty ‘colour: red’ is added to the representation of the topic entity. The topic does not shift, as
it was again the same object that was the input to the final Query primitive.

Experiments
We now validate our novel methodology using two standard benchmark challenges in the
field of visual dialogue, in particular MNIST Dialog [11] and CLEVR-Dialog [12]. Both
benchmarks were explicitly designed to be bias-free and to include a large proportion of non-
trivial co-references across dialogue turns. Due to these two characteristics, answering the
questions in the datasets cannot be done based on any statistical properties of the scenes,
questions and answers, but requires actual reasoning about both the visual content and the
discourse context.

MNIST dialog
Data. The MNIST Dialog dataset consists of 50,000 images, which are each accompa-

nied by three dialogues. Each dialogue is in turn composed of 10 question-answer pairs.
Each image consists in a synthetically generated 4x4 grid of hand-drawn digits with four ran-
domly sampled attributes: colour (‘red’, ‘green’, ‘blue’, ‘purple’ or ‘brown’), background colour
(‘cyan’, ‘yellow’, ‘white’, ‘silver’ or ‘salmon’), number (from 0 to 9) and style (‘flat’ or ‘stroke’).
A symbolic description of the scene is also provided as meta-data, but is not part of the actual
benchmark. The questions and answers are automatically generated. The questions can either
query attributes of a single digit (e.g. ‘What is the colour of the digit below it?’) or count digits
based on one or more of their attributes (‘Are there brown digits?’1). They can also include ref-
erences to the spatial relations between the digits. The answers always take the form of a single
word. An example dialogue from the MNIST Dialog dataset is shown in Fig 5. [11] estimate
that 94% of the questions involve co-references, either in the form of pronouns or in the form
of definite noun phrases.

Operationalisation and experimental set-up. There are three main challenges involved
in the operationalisation of our methodology for the MNIST Dialog benchmark. First of all,
we need a means to map the MNIST questions to semantic networks that are composed of
the primitive operations that we have introduced above. This is a highly non-trivial task, as
the MNIST dataset does not come with any semantic annotation of the questions. Second, we
need to train the neural modules that are used by these primitive operations on the MNIST
dataset images. Finally, we would like to be able to evaluate the process of mapping from

Fig 5. Example dialogue from the MNIST Dialog dataset.

https://doi.org/10.1371/journal.pone.0323098.g005

1 Somewhat counterintuitively, the answer to this question is a number and not a boolean value.
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questions to semantic networks, the execution of these networks, and the neural modules
themselves independently from each other.

In order to operationalise the process of mapping from the MNIST questions to their
semantic representations, we adopted a computational construction grammar-based
approach [74–78]. Concretely, we extended the computational construction grammar
developed by [9] for the CLEVR VQA dataset [69] so that it is able to handle constructions
involving co-referential expressions. The meaning predicates contributed by these addi-
tional constructions are expressed in terms of the primitive operations defined above. Other
approaches for mapping from natural language utterances to semantic networks, such as
LSTM-based techniques, have also been proposed in the literature (see above), but require a
gold standard annotation of the semantic networks in the dataset. Although interesting in its
own right, the details of the grammar itself fall outside the scope of this paper. We refer read-
ers interested in the application of construction grammar-based approaches to visual ques-
tion answering tasks to [9]. The execution of the semantic networks is modelled using the
Incremental Recruitment Language (IRL) framework [66,67,79,80], a procedural semantics
implementation.

In order to verify the aptness of the semantic representations resulting from the language
processing process, we have in a first phase made symbolic implementations of the primitive
operations that work on the noise-free meta-data that describe the images rather than on the
images themselves. By doing this, we could verify whether the predicted semantic networks
would in theory always lead to the correct answer given a question and a scene. We could
show that the semantic networks indeed achieved a 100% accuracy when applied to the meta-
data of the images. This proves on the one hand that the primitive operations presented above
are indeed sufficient to represent the meaning of the questions in the dataset, and on the other
hand that our grammar covers the dataset completely. It is obviously the temporary noise-free
condition of the synthetic dataset that makes the 100% figure possible.

The neural modules underlying the primitives described above were then trained on the
training section of the MNIST dataset and their accuracy was evaluated on the validation
set. All individual primitive operations achieved an accuracy of over 99.80% on the image
data. The details of the training process and the evaluation results of the individual neural
primitives are described in the appendix of this paper.

An operational example of our methodology as applied to a question and scene from the
MNIST Dialog dataset is shown in Fig 6. The figure shows the execution of the semantic net-
work corresponding to the question ‘What is its colour?’. This question is asked as the sec-
ond turn in a dialogue, following the question-answer pair ‘How many 3’s are there? One.’.
The semantic representation is composed of five primitive operations: segmenting the image
(segment-scene), retrieving the topic of the conversation from the conversation mem-
ory (get-topic), retrieving the topic in the scene (find-in-scene), checking whether the
retrieved topic corresponds to a single object (unique) and querying the colour of this object
(query). When it comes to the execution of this network, the get-topic primitive extracts
the topic from the last turn of the conversation memory and binds the retrieved topic to
the variable ‘?target-topic’. The segment-scene primitive binds a segmentation of the entire
scene to the ‘?segmented-scene’ variable. The find-in-scene primitive uses the bindings of
‘?target-topic’ and ‘?segmented-scene’ to compute the topic of the previous turn in the cur-
rent scene. The resulting attention, in this case highlighting a single cell in the second row
on the third column, is bound to the variable ‘?topic-in-scene’. The unique primitive oper-
ation checks whether there is indeed a single attention in the set bound to ‘?topic-in-scene’
and binds the attention to the variable ‘?target-object’. Finally, the query primitive queries
the colour attribute of the target object and binds the answer ‘green’ to the ‘?answer’ variable.
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Fig 6. Schematic representation of the execution of the semantic representation for the utterance ‘What is its colour?’ following the utterance ‘How many 3’s
are there?’ on a scene from the MNIST Dialog dataset.

https://doi.org/10.1371/journal.pone.0323098.g006

In terms of the classification of primitives introduced above, the segment-scene and query
operations have a subsymbolic implementation, whereas the unique, get-topic and find-
in-scene operations have a symbolic implementation. It is the find-in-scene operation that
bridges between the symbolic and subsymbolic domains.

When it comes to evaluating the performance of the overall system on the test portion of
the MNIST Dialog benchmark dataset, we include two different experimental set-ups. First of
all, in the ‘standard’ setting, we evaluate the accuracy of the answers provided by the execu-
tion of the semantic networks that result from language processing. In the ‘guessing’ setting,
the system is allowed to make an educated guess when the execution of a semantic network
fails and therefore does not lead to an answer. The educated guess is made based on the ques-
tion type as identified by the grammar and the distribution of answers per question type in
the training set. For example, if the question ‘What is the colour of the 6?’ is asked and the con-
versation memory does not contain a reference to any 6s, for example due to a previous clas-
sification error, the execution of the semantic network fails and a guess is made based on the
distribution of colours as answers in the training data. The ‘guessing’ setting is provided in
order to be able to straightforwardly compare our results to neural approaches which always
provide an answer even if its probability is low. The experimental results obtained on the
MNIST Dialog dataset are provided in Table 3 and will be discussed in the discussion section.

CLEVR-Dialog
Data. The CLEVR-Dialog dataset consists of 85,000 images, which are each accompa-

nied by five dialogues. Each dialogue starts with a caption that makes a statement about the
contents of the image (e.g. ‘There is a gray object right of a large object’). The caption is then
followed by 10 question-answer pairs. The images depict synthetically generated scenes con-
sisting of 3D geometrical objects with randomly sampled attributes: shape (‘cube’, ‘sphere’ or
‘cylinder’), size (‘small’ or ‘large’), colour (‘green’, ‘red’, ‘gray’, ‘blue’, ‘brown’, ‘yellow’, ‘purple’ or
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Table 3. Overview of results for MNIST Dialog, CLEVR-Dialog and CLEVR VQA.
MNIST Dialog CLEVR-Dialog CLEVR VQA

Encoder-decoder approaches
LF [1] 45.1 55.9 /
HRE [1] 49.1 63.3 /
MN [1] 48.5 59.6 /
AMEM [11] 96.4 / /

Neural module networks
NMN2[36] / / 72.1
IEP [7] / / 96.9
N2NMN3[81] 23.8 56.6 83.7
TbD [82] / / 99.0
corefNMN [12] 99.3 68.0 /

MAC networks
MAC [39] / / 98.9
MAC-CQ-CAA-MTM [38] / 98.3 /

Neuro-symbolic approaches
NS-VQA [42] / / 99.8
NS-Visdial [40] / 99.7 /

Ours
standard 99.8 99.0 99.7
guessing 99.8 99.2 99.7

https://doi.org/10.1371/journal.pone.0323098.t003

‘cyan’) and material (‘rubber’ or ‘metal’). The questions involve querying an attribute of an
object in the scene (e.g. ‘What shape is it?’), counting objects based on one or more of their
attributes (e.g. ‘How many green spheres are there?’), and querying whether a set of objects sat-
isfies a given description (e.g. ‘Are there any green spheres?’). The questions can involve refer-
ence to different kinds of spatial relations between objects (e.g. ‘the left block’ and ‘the block
left of the green cylinder’). In contrast to MNIST Dialog questions, anaphora in CLEVR-Dialog
questions can refer to entities mentioned in any of the previous dialogue turns. Moreover,
resolving history-dependent questions can require taking into account the entire dialogue his-
tory, as is for example the case in questions such as ‘How many other objects are present in the
image?’. An example dialogue from the CLEVR-Dialog dataset is shown in Fig 7.

Operationalisation and experimental set-up. The challenges involved in operational-
ising our methodology for the CLEVR-Dialog benchmark are the same as those discussed
above in the context of the MNIST Dialog benchmark: (i) mapping the CLEVR-Dialog ques-
tions to semantic networks that are composed of the primitive operations introduced above,
(ii) training the neural modules underlying these operations on the CLEVR-Dialog images,
and (iii) evaluating the accuracy of the language processing system and the neural modules.

In order to map from utterances to procedural semantic networks, we use the exact same
construction grammar as the one used for the MNIST Dialog benchmark. In order to verify
the aptness of the programs and language processing system, we create temporary symbolic
implementations of the primitives and evaluate the programs that resulted from language pro-
cessing on the noise-free meta-data that describe the images in the dataset. We achieved an
accuracy of 99.99%. After an exhaustive error analysis, we could conclude that the non-perfect

2 The evaluation of the model of the CLEVR dataset is reported by [71].
3 The evaluation of the model on the MNIST Dialog dataset is reported by [35] and of CLEVR-Dialog by [12].
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Fig 7. Example dialogue from the CLEVR-Dialog dataset.

https://doi.org/10.1371/journal.pone.0323098.g007

accuracy was due to scenes that contained an even number of objects and in which a ques-
tion relied on reference to the object ‘in the middle’4. As the dataset was constructed in such
a way that these questions are impossible to answer reliably, even for a human, we concluded
that the primitives are sufficient to solve the task of CLEVR-Dialog, and that the grammar
achieves maximum coverage on the CLEVR-Dialog questions.

The neural modules underlying the primitive operations described above were trained on
the training portion of the CLEVR-Dialog dataset and their accuracy was evaluated on a held-
out validation set of 10,000 images. All modules except the ‘extreme-relate-middle?’ module
achieved an accuracy of over 99.7%. The lower accuracy of this module (97.59%) is prob-
ably due to the previously described problem in which a question can refer to the ‘middle’
object in a scene with an even number of objects. The details of the training process and the
evaluation results of each individual module are described in the appendix of this paper.

An operational example of the execution of a semantic network underlying a question
from the CLEVR-Dialog dataset on an image is shown in Fig 8. In this example, the same
question as in Fig 6 is asked, namely ‘What is its colour?’. However, in this case the question
follows the caption ‘There is a large sphere.’. Also, the question is now asked about a 3D ren-
dered image rather than about a 2D 4x4 grid. The grammar maps the question to the same
underlying procedural semantic program consisting of five primitive operations. However,
the implementations of these primitives now make use of the neural modules trained on
the CLEVR-Dialog images. The primitive operations are executed and the answer ‘cyan’ is
returned.

In order to evaluate the performance of the overall system on the test portion of the
CLEVR-Dialog benchmark dataset, we make use of the two same experimental set-ups as for
the MNIST Dialog dataset. In particular, we provide the ‘standard’ and ‘guessing’ settings. The
experimental results obtained on the CLEVR-Dialog dataset are provided in Table 3 and will
be discussed here below.

Results and discussion
An overview of the evaluation results of our system on the MNIST Dialog and CLEVR-Dialog
benchmark datasets is shown at the bottom of Table 3. In the best-performing experimental
setting, i.e. the ‘guessing’ setting, where the system makes an educated guess when the execu-
tion of a semantic network fails, our system achieves a question-level accuracy of 99.8% on

4 This information was communicated to and acknowledged by the creators of the dataset.
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Fig 8. Schematic representation of the execution of the semantic representation for the utterance ‘What is its colour?’ following the caption ‘There is a large
sphere.’ on a scene from the CLEVR-Dialog dataset.

https://doi.org/10.1371/journal.pone.0323098.g008

the MNIST Dialog benchmark and of 99.2% on the more challenging CLEVR-Dialog bench-
mark. In the ‘standard’ setting, i.e. without guessing, it achieves a question-level accuracy of
99.8% and 99.0% respectively. The table also reports on the system’s performance on the stan-
dard CLEVR VQA benchmark, with a question-level accuracy of 99.7%. CLEVR VQA is not a
visual dialogue benchmark, but has been included for reference as it has been a very popular
benchmark in the literature.

The table also compares our results against previous approaches, namely the encoder-
decoder-based approaches presented by [1] and [11], the neural module networks-based
approaches by [36], [7], [81], [82] and [12], the MAC network-based approaches by [39]
and [38], and the neuro-symbolic scene-graph-based approaches by [42] and [40]. We can
see that our system outperforms the state-of-art on MNIST Dialog and obtains near-state-
of-the-art performance on CLEVR-Dialog and CLEVR VQA. While other approaches that
tackle both visual dialogue benchmark challenges typically perform much better on the eas-
ier MNIST Dialog benchmark as compared to more challenging CLEVR-Dialog benchmark,
our approach obtains consistently good results across both visual dialogue datasets.

While the reported benchmark accuracies are definitely important to validate our method-
ology in comparison to existing approaches, the more prominent contribution of the method-
ology that we present lies in four main characteristics that distinguish it from the state of the
art in visual dialogue. First of all, the methodology is explainable in human-interpretable
terms. Input utterances are mapped onto procedural semantic representations, which corre-
spond to logic programs. These programs, which reveal the logical structure underlying an
input utterance, are composed of human-interpretable primitive operations, such as count,
query and filter. This means that the result of the initial language processing step can be
inspected and understood by the user. The conversation memory of the system also stores
information about the history of a dialogue in a structured and human-interpretable way,
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thereby being fully transparent about what is remembered by the system. The input and out-
put of each primitive operation can be traced and interpreted, as they consist in either mean-
ingful symbols (human-interpretable categories) or visual attentions over images. Given that
these visual attentions are the input and output of human-interpretable operations, humans
are able to judge whether an attention corresponds to what is expected or not. As the sym-
bolically implemented primitives can be traced on a meaningful level, the only aspect of the
system where the interpretability of the computation is limited is situated in the subsym-
bolic primitives that deal with perception on the lowest level. By pushing the neuro-symbolic
boundary so far down, we ensure that any reasoning capabilities that exceed the perception of
basic categories is explainable in human-interpretable terms.

A related advantage of this approach is that it avoids inconsistencies in reasoning by
implementing its subsymbolic primitive operations on top of a shared inventory of highly-
specialised neural modules. Keeping consistency across reasoning operations is a highly
desirable property of intelligent systems, which at the same time leads to a more human-like
behaviour. For example, it is obvious that the human capabilities of recognising objects and
counting objects rely on the same conceptual distinctions. This is reflected in our system by
implementing the count primitive in terms of computing the cardinality of a set of objects
returned by a filter operation, which is itself implemented based on the same set of binary
classifiers as the query operation. The answer to the question ‘How many red blocks are there?’
is as a consequence guaranteed to be consistent with the answers to the question ‘What is the
colour of the block?’ asked for each block in the scene.

A third asset of our approach is that it can effectively monitor its own performance. This
has become a topic of high interest in the AI community, since deep neural networks often
provide confidence scores of poor quality, especially when it comes to out-of-distribution data
[83,84]. Concretely, in our case, the system knows that it has not been able to answer a ques-
tion based on sound logic reasoning if the execution of a semantic network fails. While it can
still make an educated guess in such cases, the system then indicates that the result should
be interpreted with extra care. In fact, the execution of a semantic network fails in 55.0% of
the CLEVR-Dialog errors (i.e. errors in the ‘standard’ setting) and in 41.7% of the MNIST
Dialog errors (in the ‘standard’ setting as well). The remaining 45.0% and 58.3% of errors
respectively remain undetected by the system. This amounts to only 0.4% of the questions in
CLEVR-Dialog and 0.1% of the questions in MNIST Dialog.

A final advantage resides in the modularity of the approach. New primitive operations can
be added to the system in order to accommodate new tasks or to model new cognitive capa-
bilities acquired by an artificial agent. These new primitives can add to both the logical and
perceptive reasoning capabilities of the agent. Where appropriate, they can reuse neural mod-
ules used by existing primitives without needing to retrain them. Neural modules can also
dynamically be added, but these might affect the performance of other modules and there-
fore require retraining some of them. For example, adding a binary classifier for a new colour
will likely affect the performance of existing binary classifiers for other colours, as these were
trained in the absence of the new colour category.

When applying the methodology to a new domain or dataset, two aspects remain partic-
ularly challenging. The first one concerns the design of an adequate inventory of primitive
operations. In general, such an inventory can be modelled after what is known about human
cognition, can be based on a particular theory of computation, or can more practically result
from system constraints such as a robot’s API [85]. The second challenge concerns learn-
ing to map from questions to procedural semantic representations that combine primitive
operations. For a deeper discussion of this topic, we refer the interested reader to [8,86].
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Figs 9 and 10 illustrate the interpretability of our approach by providing two examples of
questions from the CLEVR-Dialog dataset that were wrongly answered. Concretely, these
examples show how the system supports the tracking of the source of errors by providing
insight into the logical structure underlying the question, and into the input and output of the
different primitive operations that were performed. Fig 9 shows the execution of the seman-
tic network underlying the utterance ‘How many brown objects are there?’ on a given CLEVR
scene. We can see that the question has been analysed into three primitive operations: seg-
menting the scene (segment-scene), filtering the segmented scene for the colour brown
(filter) and counting the number of the resulting set of brown objects (count). The result
of the counting operation, which is at the same time returned as the answer to the question, is
two. However, this answer does not match the gold standard answer from the dataset, which
is one. Indeed, when scrutinising the execution trace of the semantic network on the scene, it
becomes clear that the filter operation has retrieved two brown objects. After a visual inspec-
tion of the attentions, the human observer can see that the leftmost object in the scene was
wrongly classified as being brown and the source of the error has been found. If we would
now query the colour of the leftmost object in the scene, the system is also guaranteed to
answer brown, as the filter and query primitives internally rely on the same neural classi-
fiers. Thus, while the answer to the question is wrong, it is logically consistent with the overall
perception and reasoning skills of the system.

Fig 10 traces back the source of the erroneous answer three to the question ‘How many
other objects are there?’. We can see that the question is analysed into four primitive opera-
tions: segmenting the scene (segment-scene), filtering the conversation memory for objects
(filter), taking the set difference between the objects in the segmented scene and those
retrieved from the conversation memory, and counting the resulting set (count). In this case,
the conversation memory spans two turns in which only a single object has been mentioned.
Indeed, the scene contains three objects apart from the one that has been mentioned already.
All aspects of the construction and execution of the semantic network seem to be flawless, but

Fig 9. Schematic representation of the execution of the semantic network underlying the utterance ‘How many brown objects are there?’ on a scene from
the CLEVR-Dialog dataset, illustrating the transparency of the approach. The filter operation wrongly recognises the leftmost object to be brown. As a
consequence, two brown objects are counted instead of one.

https://doi.org/10.1371/journal.pone.0323098.g009
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Fig 10. Schematic representation of the execution of the semantic network underlying the utterance ‘How many other objects are there?’ on a scene from
the CLEVR-Dialog dataset, illustrating the transparency of the approach. The figure shows that the semantic network and its execution are flawless. As a
consequence, the erroneous answer three must be due to an error in the conversation memory introduced in a previous dialogue turn.

https://doi.org/10.1371/journal.pone.0323098.g010

the answer three does not match the gold standard answer two. This tells us that the prob-
lem does not occur while processing the current dialogue turn, but that it must stem from an
error in processing a previous dialogue turn that had as a consequence that a second men-
tioned object was not recognised and therefore does not appear in the conversation memory.
The user can then continue analysing the previous turns to retrieve the original source of the
problem.

Conclusion
This paper has introduced a novel methodology to solve visual dialogue tasks, based on the
use of neuro-symbolic procedural semantic representations. Concretely, this methodology
encompasses (i) the use of a conversation memory as a data structure that explicitly and
incrementally represents the information that is expressed during the subsequent turns of
a dialogue, and (ii) the representation of natural language expressions as neuro-symbolic
semantic networks that are grounded in both visual input and the conversation memory.
These networks are composed of a combination of subsymbolic primitive operations that
model the perceptual capacities of an agent and symbolic primitive operations that model its
reasoning capabilities. Upon evaluation on the MNIST Dialog and CLEVR-Dialog bench-
marks, our methodology respectively yields state-of-the-art and near-state-of-the-art perfor-
mance.

Our methodology presents four main advantages with respect to the state of the art in
visual dialogue, which is dominated by attention-based neural network approaches. First
of all, the methodology is to a great extent explainable in human-interpretable terms. The
semantic networks that represent the meaning of natural language utterances are composed
of human-interpretable primitive operations, their input and output arguments are either
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meaningful symbols or interpretable visual attentions, and the conversation memory repre-
sents information conveyed in earlier dialogue turns using a transparent symbolic data struc-
ture. This enables the human observer to verify whether an answer returned by the system is
indeed the result of sound logic reasoning, as well as to trace back the exact source of any per-
ception or reasoning errors that might occur. Second, the methodology avoids potential rea-
soning inconsistencies by implementing the primitive operations on top of a shared inventory
of highly-specialised neural modules. This ensures at least that the results of different primi-
tive operations are guaranteed to be consistent with each other, whether the neural modules
have made correct predictions or not. Third, the system can effectively monitor its own per-
formance, as errors that result from language processing or from the execution of individual
primitive operations lead in many cases to an automatically detectable failure in the execu-
tion of a semantic network. Finally, the modularity of the approach ensures that new prim-
itive operations can be dynamically added in order to accommodate new tasks or in order
to model new cognitive capacities acquired by an agent. These new primitive operations can
thereby build further on existing primitive operations or neural modules where appropriate.

Finally, the research reported on in this paper contributes to the growing body of research
in artificial intelligence that tackles tasks that involve both low-level perception and high-
level reasoning using a combination of neural and symbolic techniques. Neural techniques
are used to deal with low-level perception tasks and thereby give rise to meaningful symbols
that can then be used as a basis for higher-level reasoning operations. It thereby bears the
promise of leading to the development of artificial agents with more explainable, consistent
and human-like cognitive capacities.
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