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Abstract

Procedural text is text composed of instructions on how to perform a specific task. Un-
derstanding such text requires insight in the impact of events on the world, which is a
major component of intelligence. Benchmarks that support the development of artificial
intelligence approaches towards achieving this capability often use recipes as a source
of procedural text, because recipes are abundantly available and have consistent tasks
and tools. Moreover, deep recipe understanding could lead to many practical applica-
tions such as the robotisation of everyday cooking. Despite the existence of these recipe
benchmarks, however, the performance of robots is still limited when it comes to under-
standing an arbitrary recipe enough to allow execution. Current recipe understanding
benchmarks have failed to achieve widespread adoption and lack important benchmark
properties, which can slow down progress. They have no clear evaluation methods that
could transfer results to the real world; they overly promote specific types of models and
they miss transparency regarding benchmark applicability and design. In this thesis,
we therefore developed a new benchmark, called the MUHAI Recipe Execution Bench-
mark, with all choices, properties and general usage being transparently analyzed and
documented. In particular, we have first created the MUHAI Cooking Language which
is a graph-based, machine-readable representation language for recipe execution. A test
set with gold standard recipe annotations in this language is then obtained through a
data curation process. To avoid overfitting and overpromotion of a particular approach,
only test data is curated to separate model development from model evaluation. To
perform model evaluation, a symbolic simulator is developed that measures performance
using both simulation-based and non-simulation-based metrics. This combination allows
for multiperspective performance estimates which optimizes transferability to real-world
utility. Smatch, a commonly used semantic graph comparison tool, is included because
of its high adoption rate, while simulation-based metrics are included because of their
specificity towards gauging recipe execution abilities. Developed simulation-based met-
rics are ‘goal-condition success’ which measures how many required goal-conditions have
been traversed during recipe execution, ‘dish approximation score’ which estimates sim-
ilarity between two prepared food products and ‘recipe execution time’ which measures
efficiency. Whether the developed benchmark will achieve community-wide adoption and
lead to significant advances in natural language understanding can only be determined
in the future. Nevertheless, its transparent design makes it useful for developing recipe
understanding approaches and could even serve as inspiration for new benchmarks.



Samenvatting

Procedurele tekst is tekst dat is opgebouwd uit instructies om een specifieke taak uit
te voeren. Zulke tekst begrijpen vereist inzicht in de impact van gebeurtenissen op de
wereld, wat een belangrijke component is van intelligentie. Benchmarks voor de on-
twikkeling van artificiële intelligentie technieken voor de verwerving van dit vermogen
gebruiken vaak recepten als tekstbron, omdat recepten rijkelijk beschikbaar zijn en con-
sistente taken en gereedschap bevatten. Bovendien zou diepgaand begrip van recepten
kunnen leiden tot diverse toepassingen, zoals de robotisering van het alledaagse koken.
Ondanks het bestaan van deze benchmarks zijn de prestaties van robots echter nog steeds
beperkt als het aankomt op recepten voldoende begrijpen om ze effectief te kunnen uitvo-
eren. Huidige benchmarks voor receptontleding bereikten geen algemene ingebruikname
en hebben enkele tekorten in kwaliteit die vooruitgang kunnen vertragen. Duidelijke eval-
uatiemethodes zijn afwezig; er is vaak overpromotie van middelen-intensieve modellen en
er is weinig transparantie wat betreft ontwerpkeuzes en toepassingsgebied van de bench-
mark. Daarom hebben we in deze thesis een nieuwe benchmark ontwikkeld, namelijk de
MUHAI Recipe Execution Benchmark, waarbij alle keuzes, eigenschappen en algemeen
gebruik openlijk geanalyseerd en gedocumenteerd zijn. Meer bepaald hebben we eerst
de MUHAI Cooking Language gecreëerd die een op grafen gebaseerde machineleesbare
representatietaal is voor receptuitvoering. Een testset met annotaties van recepten is
vervolgens verworven via een datacuratieproces. Om overfitting en overpromotie van
specifieke aanpakken te vermijden, wordt er enkel testdata geleverd om modelontwikke-
ling en -evaluatie te scheiden. Om modellen te evalueren is er een symbolische simulator
ontwikkeld die prestaties meet via diverse metrieken, waarvan de meeste op simulatie
gebaseerd zijn. Deze combinatie van metrieken laat multiperspectieve schattingen toe
wat hun scores beter overdraagbaar maakt naar nut in de echte wereld. Smatch, een
veelgebruikte vergelijkingstool voor semantische grafen, is gëıncludeerd omwille van zijn
hoge adoptiegraad, terwijl op simulatie gebaseerde metrieken zijn toegevoegd omwille
van hun specificiteit wat betreft het ijken van succes in receptuitvoering. Ontwikkelde
op simulatie gebaseerde metrieken omvatten ‘goal-condition success’ dat het doorlopen
van nodige tussendoelen meet, ‘dish approximation score’ wat de gelijkenis tussen twee
bereide voedingsproducten schat en ‘recipe execution time’ wat efficiëntie meet. Of de
ontwikkelde benchmark tot vooruitgang zal leiden kan nog niet vastgesteld worden, maar
zijn open ontwerp maakt hem hoe dan ook nuttig voor de ontwikkeling van technieken
voor receptontleding en zelfs als inspiratie voor nieuwe benchmarks.
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Chapter 1

Introduction

Natural language understanding (NLU) has captivated both academic and industrial
researchers since the start of the field of artificial intelligence (AI; Jones, 1994). In or-
der to reach general-purpose NLU a lot of research has already gone into developing
methodologies and benchmarks that aim to be as general-purpose as possible (Cam-
bria & White, 2014; Wang et al., 2019). A lot of this research focuses on declarative
language use, which is the language that is generally used in news papers or everyday
conversations for example to convey information by declaring facts or opinions. How-
ever, understanding procedural language, which generally consists of instructional steps
for performing a specific task, is equally important both from a scientific and a practical
viewpoint. From a scientific viewpoint, it can be stated that understanding the impact
that certain actions or events will have on the world is a major component of intelligence.
Procedural text understanding generally requires modeling and reasoning with a dynam-
ically changing world and can therefore be seen as a representative task for estimating
this ability (Henaff et al., 2017; Mishra et al., 2018). From a practical viewpoint, having
agents that understand procedural language could for example progress the development
of robotic workers that could execute a variety of manual tasks (J. Ribeiro et al., 2021).

The cooking domain in particular has been popular in this context. This popularity
can be explained by the availability of a large amount of recipe data, a clear objective that
should be reached in the end and the possibility of making some simplifying assumptions
about the environment due to general consistency in objects, tools and tasks (Bollini
et al., 2013; Kiddon et al., 2015; Maeta et al., 2015). Furthermore, cooking is a common
and frequent activity taking place in both personal and professional environments. This
means that a practical application such as a cooking robot that can follow arbitrary
recipes would be able to relieve a lot of manual labor. Especially in the industrial
setting, there is an increasing demand for robotic help in recent times due to changed
customer perspectives after the COVID-19 pandemic and unresolved worker shortages
in restaurants and food supply chains (Chuah et al., 2022).

Due to this popularity and need, there exists quite a bit of prior research related to
applying AI techniques inside the cooking domain. These techniques vary from generat-
ing food recommendations (Elsweiler et al., 2017) to being able to robotically cook a dish
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starting from just a recipe written in English (Beetz et al., 2011; Bollini et al., 2013).
However, results of these cooking robot experiments so far have been inadequate for
general use except in very standardized settings that require limited domain knowledge.
Investing further resources in the different subsystems of such a cooking robot is needed.
Progression is still needed in robotic manipulation systems, computer vision and also in
NLU.

An approach that has proven to be successful in steering and boosting progress in
diverse scientific fields is the use of benchmarks (Donoho, 2017). Therefore, throughout
the years some research has already been put into creating benchmarks for recipe under-
standing with the aim of parsing natural language text to an executable machine-readable
and mostly graph-based format (Jiang et al., 2020; Tasse & Smith, 2008; Yamakata et
al., 2020). However, these benchmarks have currently failed to achieve community-wide
adoption because they lack certain properties that are considered to be important for
ensuring high benchmark quality.

Therefore, the development of a new recipe understanding benchmark seems useful
for progressing the field of procedural language understanding with the ultimate goal
being the achievement of general robotic recipe execution. Such a benchmark should
reuse concepts and ideas from prior research that seem to be beneficial while improving
upon components that are lacking in previously developed benchmarks.

1.1 Problem Definition

Cooking is a common human activity that has certain characteristics making it suitable
for execution by an artificial agent. Although a lot of research and progress has already
been made in this context, further efforts are needed and existing resources seem inade-
quate. Therefore, the main goal of this master thesis is the development of a new recipe
understanding benchmark with a strong focus on applicability in the context of robotic
execution. Explicitly, the research question studied can be stated as follows:

“How can we design a benchmark that can foster progress in the domain of natural
language understanding with a focus on the deep understanding of an everyday human
activity, in particular the execution of recipes written in natural language in a kitchen
environment?”

Answering this question will require research into the current status of the domain of
NLU and into benchmarking. Subsequently, insights gained from this research will have
to be put in practice in order to develop a new benchmark that can progress the field. In
other words, our research question involves finding an answer to multiple subquestions
such as:

� What are the properties of a good benchmark?

� What relevant methodologies and benchmarks exist in the domain of natural lan-
guage understanding for recipe execution?
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� How can we practically build a benchmark that mitigates common benchmark
issues, while maximally preserving their benefits?

1.2 Thesis Structure

To be able to give a clear answer to our research question, we have structured our thesis
as follows. In Chapter 2, we will give an overview of relevant background knowledge that
will aid in understanding the research performed in this thesis. This includes investigat-
ing the current state-of-the-art when it comes to recipe understanding and execution as
well as formally defining what a benchmark is and analyzing which properties it should
possess to be of high quality.

Chapter 3 then defines a new benchmark based on the insights that are gained from
Chapter 2. An important point of focus for this new benchmark has been application-
specificity and evaluation, with extensive effort being put into building a kitchen sim-
ulator and metrics that allow for transferring performance results to the real world.
Furthermore, openness and transparency about made design choices, their benefits and
their potential drawbacks have been made a priority. This is further accentuated by an
in-depth analysis of the benchmark’s properties at the end of this chapter.

Chapter 4 explains the newly developed benchmark from a more practical perspective
by illustrating how it can be set up and used. This includes both technical setup and
usage information as well as highlighting some general linguistic and extralinguistic
challenges researchers will encounter while building models for recipe understanding.

Finally, in Chapter 5 we will conclude our thesis with a brief summary and discussion
followed by an outlook on potential future work.
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Chapter 2

Background

Understanding the made decisions and the research presented in this thesis will be fa-
cilitated by having background knowledge in two broad domains. These are the domain
of recipe understanding and the domain of benchmarking. In section 2.1 we will present
the current state-of-the-art when it comes to understanding recipes written in natural
language. Section 2.2 will then delve deeper into the characteristics, importance, benefits
and risks of benchmarking in the field of AI and natural language processing (NLP) in
particular. Section 2.3 handles the intersection of the aforementioned domains by pro-
viding an overview and analysis of relevant recipe-related corpora. Finally, in section 2.4
we motivate why a new benchmark -and in extension this thesis- is useful based on the
presented background information.

2.1 Understanding Recipes

Processing, interpreting and understanding natural language has garnered the interest
of both researchers and industry since the late 1940s (Cambria & White, 2014; Jones,
1994). Throughout the years it evolved from slow syntax-oriented machine translation
using punch cards and batch processing to real-time and more semantics-oriented ap-
proaches that try to solve a variety of tasks based on world knowledge, symbolic reasoning
and statistical inference. However, many problems still remain to be solved before we
can shift from mere processing to what is commonly described as true general-purpose
natural language understanding (NLU; Allen, 1995). Therefore, a lot of the current
research either focuses on overcoming one of these specific problems in NLU or limits
itself to a more specialized, manageable domain (Cambria & White, 2014).

Our research belongs to the latter branch of research. Consequently, this background
section will mainly try to provide insight into concepts, terms and prior research specif-
ically related to understanding written recipe texts. Furthermore, the variety in prior
endeavors in the field of cooking-related systems that demonstrate an understanding of
recipes beyond the level of syntax is rather big. This deeper understanding can for exam-
ple be shown by distilling general cooking knowledge from recipes (Oonita & Kitayama,
2020; Yamaguchi et al., 2020; Yoneda & Nadamoto, 2018), by recommending food al-
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ternatives based on health, user preferences or food pairings (Elsweiler et al., 2017; Ge
et al., 2015; Nishimura et al., 2022; Simas et al., 2017; Twomey et al., 2020; Yasukawa
et al., 2014), by providing general culinary analysis and modifying calories, cuisine styles
or difficulty levels (Harashima et al., 2020; Kazama et al., 2018; Mohammadi et al., 2020;
Sajadmanesh et al., 2017; Seki & Ono, 2014), by instructional question anwering (Liu
et al., 2020; Yagcioglu et al., 2018), by aligning recipe instructions with videos or im-
ages (Liu et al., 2020; Malmaud et al., 2015) or by creatively generating partial or whole
recipes (K. R. Chandu et al., 2020; Kiddon et al., 2016; Lee et al., 2020; Pini et al., 2019;
Salvador et al., 2019). However, this section will focus on recipe parsing and processing
that might ultimately lead to a robot being able to actually execute recipes. Therefore,
the presented state-of-the-art will mostly be related to research that yields a formal and
adequately detailed machine-readable semantic representation of recipes after parsing.

Lastly, it is important to note that only research published in English has been con-
sidered in order to prevent translation issues. However, some of this research published
in English still concerns Japanese recipes. Prior research by Yamakata et al. (2017) and
Sato et al. (2016) has shown that significant structural differences can be found between
English and Japanese recipes. These differences range from a distinct way of referencing
intermediate results to not including specifications of certain preparation processes and
having a completely different instruction flow when describing the cooking process. This
can lead to some steps being omitted, added or modified during the NLU process (Ya-
makata et al., 2020). Nevertheless, research related to Japanese recipes has still been
included as many concepts are useful for English recipes even if they cannot always be
used directly as presented. We will indicate what might be different for English recipes
where relevant.

In the next sections we will first provide an overview of what understanding a recipe
entails and which linguistic phenomena are generally encountered during this process.
After that, we will give an overview of the recipe representations and approaches that
are used in the current state-of-the-art. Finally, we will also include some examples of
successful robotic recipe execution.

2.1.1 Recipes as Procedural Text

Recipes can be categorized under the subdomain of natural language that is called pro-
cedural text. Procedural text distinguishes itself from other types of text by being more
goal-oriented in the sense that it generally consists of a sequence of sentences represent-
ing ordered instructions that lead to achieving a certain goal state through sequential
or parallel execution (Maeta et al., 2015). In contrast to general language use proce-
dural texts also contain clearer, shorter and more imperative, domain-specific sentences
with less modal aspects and viewpoint dependencies. The aforementioned characteristics
make procedural text an interesting target for AI applications, because understanding
this more objective text comes down to learning and executing this sequence of proce-
dural actions while tracking the resulting states to eventually work towards one or more
definable goals. These are suitable conditions for many known AI paradigms (Nishimura
et al., 2020). The general popularity of cooking and subsequent large amount of available
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data, i.e., recipe texts, that exist online and offline further make recipes in particular a
commonly used form of procedural text in AI research (Kiddon et al., 2015).

A prototypical recipe text is generally formatted as a triple consisting of a title, an
ingredient list and a list of step-by-step instructions. In some recipes, however, there
might not be an explicit ingredient list as fetching and preparing ingredients is made
part of the listed instructions (Kiddon et al., 2015; Yamakata et al., 2017). Both these
ingredient and instruction lists can be interpreted as procedures for the creation or
manipulation of objects, with the title giving some indication of the end goal that will
be reached (Maeta et al., 2015; Mori, Maeta, Sasada, et al., 2014).

2.1.2 Linguistic Analysis of Recipes

As mentioned in the previous section, recipe text has some inherent qualities that facil-
itate processing it. Nevertheless, some linguistic phenomena are still present that could
be problematic and need to be addressed to allow successful interpretation. Some of
these phenomena can be seen as fairly common NLU subtasks, while others are more
specifically related to recipes. In both cases, however, the approaches in solving them are
generally specialized to the domain of cooking. To better understand the next sections,
we will give a brief overview of the processing tasks that are frequently needed when
parsing recipe text.

Word Segmentation

In contrast to English where words are generally separated by whitespace characters,
some languages do not have such clear word boundaries. Japanese sentences for ex-
ample do not necessarily contain explicit delimiters separating the words (Yamakata
et al., 2017). In such languages a process called word segmentation generally has to be
conducted before being able to perform any other NLU tasks (Nakagawa, 2004).

For processing Japanese recipes word segmentation has mostly been defined as a
classification problem. Machine learning methods, such as support vector machines
(SVMs), conditional random fields (CRFs) or logistic regression, can be used to predict
whether a boundary between two characters is likely to exist or not (Kudo et al., 2004;
Neubig et al., 2011a). For class prediction, information about surrounding characters
and the presence or absence of words in available dictionaries are used as features. More
recently, some specialized neural network based architectures have also proven to be
useful for Japanese word segmentation outside of the cooking domain (Higashiyama et
al., 2020; Kitagawa & Komachi, 2018).

Part-of-Speech Tagging

Part-of-speech (POS) tagging is a process in which tags or categories are assigned to
words in order to indicate the part of speech they correspond to, i.e., to indicate the
grammatical function they have in a sentence. This is a preprocessing step that is per-
formed in many NLP applications, since further analysis can benefit from knowing this
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type of information (Voutilainen, 2005). Commonly used grammatical categories in this
context are adjective, adverb, conjunction, determiner, particle, noun, pronoun, numeral
and verb (Petrov et al., 2012). To assign these categories, modern taggers generally use
both a word’s definition and contextual information, e.g., the function or morphological
form of surrounding words. Such taggers could be based on handwritten rules, could
be automatically derived from tagged text corpora through statistical methods or a
combination of both statistical and handwritten rules could be used (Voutilainen, 2005).

Although general-purpose POS taggers seem to perform very well, with an accuracy
exceeding 97% when applied to well-known benchmarks, their performance can degrade
severely when applied in a new domain with differences in topic or writing style compared
to the data they are trained on (Gimpel et al., 2010; Manning, 2011). Since the training
data for many general-purpose POS taggers is based on news paper corpora, this can lead
to problems when applying them directly to cooking recipes (Cambria & White, 2014;
Chang et al., 2018). Recipes mostly contain imperative and rather concise sentences,
which do not occur so frequently in well-known news paper corpora such as the Penn
Treebank (Donatelli et al., 2021; Marcinkiewicz, 1994). Therefore, recipe parsing might
require some additional training or modifications to such general-purpose taggers (Chang
et al., 2018; Malmaud et al., 2015; Sasada et al., 2015). Furthermore, it should be noted
that for languages without word boundaries word segmentation and POS tagging is
often intertwined as both processes provide useful information that can be used by each
other (Mori et al., 2012; Nakagawa, 2004).

Named Entity Recognition

Understanding information that is present in texts generally requires recognizing the
correspondence between certain spans of words in that text and real-world named en-
tities (NEs). This process is called named entity recognition (NER; Grishman and
Sundheim, 1996). NER in a sentence can be seen as a sequence labeling problem, in
which the most likely combination of NE-related tags should be assigned to a sequence
of words (Li et al., 2020; Nadeau & Sekine, 2007; Yamakata et al., 2020).

To solve this sequence labeling problem a lot of general-purpose NER tools have
been developed that can be used (Borthwick, 1999; Ratinov & Roth, 2009; Sang & De
Meulder, 2003; Sasada et al., 2015). However, domain-specific NE definitions have also
proven to be useful in facilitating NER in some cases (Abacha & Zweigenbaum, 2011;
Tomori et al., 2016). In the context of recipe understanding domain-specific NEs are
mostly related to concepts such as food, tool, duration, quantity, actions or state (Jiang
et al., 2020; Mori, Maeta, Yamakata, & Sasada, 2014; Sasada et al., 2015; Yamakata et
al., 2020). Both general-purpose and domain-specific NER tools are generally based on
machine learning or deep learning algorithms (Li et al., 2020; Nadeau & Sekine, 2007).
Many of these algorithms expect the input sequence of words to have been augmented
with POS tags.

7



Anaphora Resolution

Due to the concise nature of recipe texts, expressions involving references are frequently
used to avoid redundancy. Resolving such references, i.e., finding the referent that words
have in common, is an important task in many NLP applications and has been studied
extensively. However, this research is mostly based on declarative text while procedural
anaphora resolution has been studied less extensively so far (Fang et al., 2022).

Recipes in particular seem to have some idiosyncrasies that can deviate from declar-
ative text such as news papers or common dialogues. First, so-called zero anaphora are
very common. Arguments of verbs are often elided where they are usually syntactically
required, because it is assumed that the reader can imply the argument from either the
context or commonsense cooking knowledge (Malmaud et al., 2014). Secondly, not only
shorter synonyms or pronouns are used as a reference, but hyponyms, meronyms and
metonymic generic phrases frequently occur as well (Nanba et al., 2014). This means that
knowledge about part-whole relations between entities (for hyponyms and meronyms)
or general characteristics of an entity (for metonyms) become important for correct res-
olution and interpretation. Thirdly, recipes generally include an ingredient list while
instructions frequently drop determiners when referring to those ingredients (Donatelli
et al., 2021). It is for example not uncommon to say ‘add eggs’ instead of ‘add the eggs’
when referring to the ‘six eggs’ mentioned in the ingredient list. Ensuring this connection
is made can be important for being able to interpret the recipe as a whole. Lastly, it
is crucial to realize that even though linguistically two expressions might have the same
referent this does not have to be the case semantically. The state of the real-world entity
changes during recipe execution, which means a word like ‘eggs’ could first be used to
refer to shell eggs and later to the same eggs without their shell (Fang et al., 2022).

Resolving anaphora from a syntactical, semantic and pragmatic perspective is of-
ten seen as one of the main challenges in recipe interpretation. Therefore, we refer to
section 2.1.3 for more information about methods that are used for finding correct con-
nections in recipe texts. These vary from simple recency heuristics to the use of spanning
trees, ontologies and state simulators.

Knowledge Bases & Ontologies

As mentioned in the previous section, resolving anaphora is an intrinsic part in under-
standing a recipe. Simple references could be solved by a dictionary approach in which
words are normalized to a canonical form and then matched (Harashima & Yamada,
2018; Harashima et al., 2020; Miller, 1995). Such a normalization process could already
solve many problems related to synonyms, hyponyms, meronyms and abbreviations. Ad-
ditionally, it could be used to correct misspellings which might be prevalent in case the
source data are user-generated recipes from an online source (Chung, 2012). However,
more complicated references and zero anaphora require access to cooking knowledge for
correct disambiguation. Moreover, it is not uncommon for cooking recipes to even omit
certain information entirely (Fang et al., 2022). A recipe involving eggs for example will
generally not explicitly mention the process of cracking eggs to obtain their contents,
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but will simply state to add eggs. Quantities might not always be specified either, e.g., a
statement indicating to season with salt without explicitly stating how much salt should
be used. Therefore, more extensive knowledge bases and ontologies can be very useful
in both recipe parsers and executors.

Such an ontology formally and explicitly specifies concepts (such as cooking actions,
ingredients, tools and their states), their properties, affordances and relations between
them (Gruber, 1995; Studer et al., 1998). Many broad, more general-purpose ontologies
exist for knowledge acquisition, representation and reasoning (Lenat, 1995; Suchanek
et al., 2008; Tenorth & Beetz, 2009) that have been applied in recipe parsing and ex-
ecution. However, these are often more suited for representing declarative knowledge
instead of procedural knowledge (Cambria & White, 2014). Therefore, researchers have
also focused on developing and incorporating domain-specific cooking ontologies and
databases (Badra et al., 2008; Cordier et al., 2009; Nanba et al., 2014; R. Ribeiro et al.,
2006). As an alternative to using external ontologies and databases, some efforts have
been made to address reference resolution through the use of neural network architec-
tures in which commonsense cooking knowledge is implicitly encoded (Jiang et al., 2020;
Kiddon et al., 2015). However, these approaches generally require large training datasets
to get reasonable results.

2.1.3 Recipe Parsing

The procedural nature of recipes led to implicit or explicit graph-based representations
being the most frequently used way of representing recipes in a structured machine-
readable way (Donatelli et al., 2021). Graphs are a common representation choice for
recipes because they can effectively and formally capture ingredient, tool and action se-
mantics while also indicating dependency, part-of and other relationships between them.
This allows for easier manipulation, interpretation and execution by agents (Papadopou-
los et al., 2022). An illustrative example of a possible graph-based representation is given
in Figure 2.1.

Despite the general prevalence of recipe graphs, the type of graph and level of detail
that is used can still vary a lot among representations. Moreover, a similar remark can
be made for the parsing approaches that are used to obtain these graphs from recipe
texts. Supervised, semi-supervised and unsupervised approaches have been investigated
with varying success. These approaches could be rule-based or rely on machine and deep
learning methods.

In the following paragraphs we will give an overview of existing parsing approaches.
First we will present unimodal approaches in which understanding is solely based on
recipe text as will be the case in our benchmark, followed by some interesting multimodal
approaches that try to enhance the parsing process by using images or videos in addition
to the recipe text.
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18 °C

sugar
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ingredient
heap
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mixture

Figure 2.1: Graph representation for a recipe extract in which some warm butter and
white sugar are beaten together with a whisk in a large bowl to form a mixture. Actions
are displayed as diamonds, food products as circles, tools as rectangles and additional
information as ellipses. We invented this graph representation solely for illustrative
purposes.
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Graph-based Representations

Hamada et al. (2000) performed one of the earliest works on graph-oriented recipe pro-
cessing. They tried to create data flow graphs from Japanese recipes by performing
a structural text analysis while incorporating cooking knowledge gathered in domain-
specific dictionaries. They created these cooking dictionaries by automatically gathering
keywords from cookbooks and then preliminarily categorizing them in dictionaries based
on the frequency of word occurrences and co-occurrences, e.g., seasonings are expected to
occur more frequently than regular ingredients. Nouns, i.e., ingredients and seasonings,
and verbs, i.e., actions, are then extracted via simple matching after which a rule-based
approach is used to relate verbs to their associated nouns and finally connect these noun-
verb sets to form a data flow graph with ingredients and seasonings as the main data.
Generalization issues, however, exist as the used vocabulary and sentence structure can
be quite variable between recipes making a lot of manual corrections being needed to
ensure reliable dictionary creation.

Another proposal for automatically extracting both common cooking knowledge and
building a recipe graph by parsing recipe texts was made by Kiddon et al. (2015).
They proposed an unsupervised machine learning approach in which two hard Expec-
tation Maximization (EM; Dempster et al., 1977) algorithms are used on a collection
of thousands of English recipes that they gathered from Allrecipes.com1. The first one
learns a segmentation model to extract cooking actions with their respective inputs and
outputs, while the second one learns a probabilistic distribution over connections between
these actions. Together these models can be used to obtain the most likely action graph
representations of the recipes. Common cooking knowledge is also implicitly encoded in
these models as they specify for example that a ‘mix’ action that leads to ‘dough’ will
probably involve an input of ‘flour’ and another ingredient.

Tasse and Smith (2008) developed a formal, domain-specific representation language
to translate recipe statements into a set of medium-grained machine-interpretable in-
structions. Their Minimal Instruction Language for the Kitchen (MILK) consists of
first-order logic predicates, that form an implicit graph through shared predicate argu-
ments, extended with concepts of temporal instruction order, ingredient creation and
ingredient deletion. Executing a MILK instruction leads to a change in the state of the
world, i.e., the kitchen, with an ingredient or tool being modified in some way. There-
fore, parsing a recipe into MILK and then keeping track of the consecutive kitchen states
should allow an agent to gain insight into the cooking process. It should be noted, how-
ever, that due to the conciseness of MILK a ‘do’-instruction was included to support
parsing any unknown action. Such very general instructions might complicate seman-
tic interpretation. Furthermore, Tasse and Smith (2008) actually provided the public
database Carnegie Mellon University Recipe Database (CURD), containing 260 English
recipes annotated in MILK, and trained some preliminary parser models on them. The
parsing accuracy of these models, however, were deemed insufficient for use.

Building on CURD Jermsurawong and Habash (2015) developed a new dataset
of ingredient-instruction dependency trees for recipes, called the Simplified Ingredient
Merging Map in Recipes (SIMMR). SIMMR is actually less expressive than MILK as it
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only focuses on modeling the flow of ingredients throughout the recipe without seman-
tically specifying what each individual instruction means. The leaf nodes in a SIMMR
tree consist of the initial list of ingredients, while internal nodes consist of recipe instruc-
tions. A hierarchical tree edge between two nodes then signifies that the ingredient or
instruction output of a child node is used as input for the instruction of the parent node.
Jermsurawong and Habash (2015) converted CURD to a database of SIMMR trees to
then train a Linear SVMrank classifier on the result in order to learn recipe parsing. For
each possible edge more than a thousand features are considered to predict its existence.
In contrast to the MILK parsers of Tasse and Smith (2008), the obtained accuracy of
SIMMR parsing was over 90% which is adequate for many use cases. However, due
to the high-level nature of the SIMMR representation these efforts are mostly useful
for investigating internal recipe structure and similarity and further extensions would
be needed to become a true semantic representation closer to MILK (Jermsurawong &
Habash, 2015).

Jiang et al. (2020) decided to deviate from representations such as MILK that re-
quire predefining domain-specific cooking predicates. Instead, they strive to comprehend
recipes by combining generic NLP subtasks in order to make their approach less limited
to the cooking domain. More specifically, Jiang et al. (2020) aim to create directed acyclic
graphs (DAGs) in which nodes represent recipe-related entities such as ingredients, tools,
actions or intermediate results and edges denote relations between them. These relations
are described through generic predicate-argument structures from PropBank (Kingsbury
& Palmer, 2002), which captures general semantic concepts and roles instead of being
specifically tailored to the cooking domain. After creating their own annotated dataset,
consisting of the same base recipes as the SIMMR dataset (Jermsurawong & Habash,
2015), Jiang et al. (2020) experimented with neural network model configurations com-
bining Bidirectional Long Short-Term Memory (BiLSTM) architectures (Schuster &
Paliwal, 1997) with pre-trained word embedding vectors from GLoVe (Pennington et
al., 2014) and BERT (Devlin et al., 2018) which is generally seen as the current state-
of-the-art in many NLP applications (McCann et al., 2017; Wolf et al., 2020). Although
initial results of these models seem promising, a larger training dataset seems needed
to be able to further improve performance. Furthermore, it should also be noted that
the generic nature of PropBank predicate-argument structures might make actual cook-
ing execution by robotic agents more difficult due to being less tailored to that specific
domain.

Approaches based on DAG representations through machine learning have also been
very popular for parsing Japanese recipes. Mori et al. (2012) used DAGs as the basis
for representing individual recipe sentences as work flows. They proposed a combina-
tion of machine learning approaches composed of two big phases. In the first phase a
combination of pointwise prediction classifiers (Neubig et al., 2011b) was used for word
segmentation and NER, followed by a pointwise syntactic analyzer (Flannery et al.,
2011) to obtain a dependency tree composed of segmented word nodes with NE labels
also being attached to subtrees. In the second phase a rule-based approach is then used
to transform this dependency tree into a machine-readable predicate-argument structure
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called a recipe work flow. This work flow proposal, however, represents each sentence
in isolation which means it has no solution for linguistic issues that span multiple sen-
tences, e.g., coreference resolution. Mori et al. (2012) acknowledged this limitation and
performed follow-up research to extend their representation to a more elaborate recipe
flow graph (Maeta et al., 2015; Mori, Maeta, Yamakata, & Sasada, 2014).

A recipe flow graph adds connections between all sentences in the recipe text and
has a special root specifying the final dish that will be created upon recipe execution.
First, Mori, Maeta, Yamakata, and Sasada (2014) created a public corpus composed
of recipe texts annotated with the aforementiond flow graphs. Later, they then used
this corpus to extend their prior parsing approach in order to produce interconnected
recipe flow graphs instead of isolated work flows for each recipe sentence (Maeta et al.,
2015). Word segmentation and NER remained, but the pointwise syntactic analyzer
and subsequent dependency transformation have been replaced by the application of a
custom Maximum Spanning Tree (MST; Chu and Liu, 1965; Edmonds, 1967) algorithm.
This algorithm maximizes the likelihood of edges between the NEs found in the recipe
and thus estimates the most likely flow graph. Applying the resulting parsing framework,
however, currently leads to a parsing accuracy of around 50%, with most mistakes being
caused by the MST algorithm. Later research by Yamakata et al. (2020) also ported
the approach to English recipes, with some small modifications due to the flow graph
representation not being completely language independent (Mori, Maeta, Yamakata,
& Sasada, 2014; Yamakata et al., 2020). Parsing results were comparable to those of
the Japanese recipes. Furthermore, these recipe flow graph corpora also inspired some
other recipe parsing approaches that led to simplified versions of the presented recipe
flow graphs. Simplified graphs were used to make gauging recipe similarity quicker and
easier (Donatelli et al., 2021; Yamakata et al., 2013, 2016). However, these simplifications
should not lead to deeper recipe understanding or better execution as many details about
ingredients and tools are omitted in them.

Dynamics Simulation

As an alternative to directly building graph representations based on recipe texts, some
researchers proposed a complementary world-centric modeling approach in which the
recipe is understood by tracking state changes in simulation. In their vision paper,
Malmaud et al. (2014) suggested that maintaining a latent context during parsing would
support correctly interpreting recipe instructions. This latent context represents how the
kitchen state would be evolving during recipe execution. This contextual information
is needed as the meaning of each individual recipe instruction at the time of processing
depends on the availability of resources in the physical environment, the current state of
all resources and commonsense knowledge about them. To capture the needed context,
Malmaud et al. (2014) propose using a Hidden Markov Model (HMM) in which a recipe
sentence and the current state is used to estimate which action on which kitchen entities
is being described. They assumed to have access to a cooking simulator that could
implement the world dynamics model of the underlying Markov Decision Process, i.e., a
simulator that would specify p(St|St−1, At), with St and At respectively being the state
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and the executed action at time step t. To further enhance their HMM visual data, in
the form of how-to videos or instructional images, could be used to get more reliable
estimations. Although the general idea seems compelling, the vision paper’s proposed
methods currently has not led to an actual implementation.

However, an implementation of a related idea does exist. Bosselut et al. (2018) de-
veloped a model called a Neural Process Network in which action and entity relations
are integrated into a neural network architecture. They model understanding a recipe
as finding a sequence of kitchen state changes induced by executing actions on kitchen
entities in simulation. This simulation is performed by updating and tracking a set of a
priori specified actions and entity embeddings that encode information along six relevant
dimensions, namely location, cookedness, temperature, composition, shape and cleanli-
ness. More specifically, their proposed parsing architecture is composed of five modules.
A first module receives one recipe sentence as an input and uses a bidirectional Gated
Recurrent Unit (GRU; Cho et al., 2014) to encode every word in that sentence to finally
output these encodings as a vector. Using this encoded vector as input a second and
third module will then respectively select actions and entities based on their attention
distributions. To solve possible issues with sentences in which entities are not explicitly
mentioned, the attention distributions from both the current sentence and the previ-
ous sentence are considered. The embeddings of selected actions and entities are then
passed to the fourth module. This module simulates executing the selected actions on
the selected entities and updates the resulting entity embeddings accordingly. The fifth
and final module will then use multi-class classifiers to translate the entity embedding
updates to discrete changes in the entity states along each of the six previously men-
tioned dimensions, leading to an interpretable state representation. Experiments with
the proposed architecture led to an accuracy of 55% for state changes, which indicate
that world dynamics are effectively learned. However, achieving this accuracy already re-
quired 65,000 annotated recipes and further improvements will probably require further
resource-intensive annotation work.

Multimodal Approaches

People sometimes combine both language and perceptual information in an effort to
better understand recipe instructions, as evidenced by the existence of recipes accompa-
nied by images and how-to videos (Malmaud et al., 2015). This insight has led to some
recent research focusing on adopting a similar approach for artificial agents by provid-
ing multimodal information when parsing recipes. Pan et al. (2020a) proposed a neural
encoder-decoder model that fuses image and text embeddings per recipe step to then use
these for predicting causal relations between the different steps. By finding these causal
relations the model constructs a so-called cooking workflow, which is a DAG with recipe
steps as its nodes. Although the level of detail in this cooking workflow representation
is insufficient for recipe understanding in the context of execution, it does show that an
agent can learn the temporality inherent to a recipe. This means an agent can learn
whether two cooking steps can be executed in parallel or only sequentially and what im-
plicit causal effects certain cooking steps might have. Furthermore, the research of Pan
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et al. (2020a) demonstrate the feasibility of successfully combining both modalities as
performance increased compared to a text-only approach. However, their comparative
experiments with text-only and image-only models also indicate that textual information
still seems to be the most important modality.

Even more recently, Papadopoulos et al. (2022) proposed a multimodal approach
in which a recipe text and an accompanying image of the prepared dish are used to
generate a program representation of a recipe. This representation is composed of a
sequence of cooking functions. Each function produces an output based on one or more
inputs, which could be base ingredients, previous outputs, tools or action modifiers such
as a temperature or time specification. This is somewhat similar to the MILK repre-
sentation (Tasse & Smith, 2008) as the program representation also forms an implicit
graph in which functions and parameters are nodes and edges are defined through pa-
rameter sharing. Such a structured representation should capture cooking semantics
and relational dependencies sufficiently for actual execution by an agent, since enabling
execution would then be comprised of providing a usable implementation for each func-
tion present in the cooking program. Which functions and parameters are possible in
the representation has been established beforehand in a fixed vocabulary. This vocabu-
lary was built using recipes from the public Recipe1M database (Salvador et al., 2017).
Papadopoulos et al. (2022) first extracted features for each encountered action or param-
eter using Sentence-BERT (Reimers & Gurevych, 2019) and then merged semantically
identical ones during a clustering phase. Having this vocabulary available, they then
proposed a neural encoder-decoder model that can generate a recipe program based on
a joint embedding of visual and textual information. Image encoding was based on the
Vision Transformer (Dosovitskiy et al., 2020) to obtain visual embeddings and text en-
coding was based on a similar word-based Transformer architecture to obtain textual
embeddings. A program decoder can then use these embeddings to predict a program
sequence. Experiments using this architecture and a custom database of more than 3,500
recipes with images and program representations show promising results based on the
graph edit distance (GED; Sanfeliu and Fu, 1983) between the predicted program and
a golden standard solution. However, it should be noted that computing GED is costly
and was therefore computed on only a small subset of test samples.

2.1.4 Robotic Recipe Execution

Real-world robotic cooking requires more capabilities than being able to parse a recipe
in natural language to a machine-readable and -interpretable format. Many possibly
independent research efforts in the domain of knowledge representation, reasoning, com-
puter vision and robotic manipulation have to be combined into an integrated approach.
Although achieving full robotic execution is out-of-scope for this thesis, this can still be
seen as our end goal for recipe understanding. Therefore, we will briefly summarize two
research studies that demonstrate the feasibility of an agent to physically cook a dish
starting from just a recipe written in plain English. It should be noted that these studies
have been performed some time ago, so they do not make use of the most recent devel-
opments in certain subfields. Therefore, we will mostly focus on providing conceptual
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insight into what would be needed to make robotic cooking viable without delving into
the actual technologies that were used.

A first extensive feasibility study was performed by Beetz et al. (2011). They ex-
perimented with two autonomous robots, TUM-Rosie and TUM-James, that collabo-
rated to bake pancakes with one robot being responsible for fetching everything and
the other robot performing actual cooking operations. Their experiments involved five
large domains, namely interpretation of procedural text, information usage from knowl-
edge bases, perceptual grounding, robotic manipulation motions and internal reasoning
processes. To execute a recipe a robot should first be able to map recipe instructions
to a combination of basic operations that a robot already knows how to execute, e.g.,
picking up an object or putting it down. These basic operations were installed a priori.
The mapping approach then used NLP techniques to obtain concepts and combined
this with information related to these concepts from so-called ontologies and knowledge
bases to eventually come up with a robot action plan. This action plan is declarative
in nature, specifying which entities were referred to and which sequential goals should
be achieved. Symbolic reasoning based on these goals, a pre-installed map of its envi-
ronment, information coming from ontologies and knowledge about its own capabilities
then leads to a refined plan specifying the procedural actions to be executed. With this
refined plan, the robots are then able to perform the required actions to localize and
manipulate objects while being guided by perceptual input from their sensors in order to
physically make the pancakes. Afterwards, post-execution question answering is possible
by having continuously logged data coming from sensors, belief states and the task tree.
This question answering demonstrates that an agent can not only execute actions but
also understand and explain why he performed them. Additionally, Beetz et al. (2011)
also stated that including some form of physics-based simulation could further enhance
reasoning capabilities. Moreover, mentally executing actions before physically execut-
ing them could help in predicting consequences and thus in avoiding future problems.
Lastly, it should be noted that these experiments show feasibility of robotic cooking,
but hand-coding of robot actions and providing human assistance to the robots was still
required for successful cooking of this one particular dish.

Bollini et al. (2013) also saw the potential benefits of investigating whether a robot
cook could be created. They developed BakeBot which is a robot that can bake cookies
by reading a list of recipe instructions. Some simplifying assumptions were made, with
the most important one being that the kitchen is mise en place. This means bowls,
small tools and pre-measured ingredients are placed in fixed positions on a work table.
Furthermore, similarly to TUM-Rosie and TUM-James (Beetz et al., 2011) the location
of larger appliances, such as an oven, are known through a pre-installed model of the
environment. The research of Bollini et al. (2013) and Beetz et al. (2011) also have some
other ideas in common. According to Bollini et al. (2013) a robot will also have to map
recipe instruction to a combination of primitive operations that a robot already knows
how to execute, although the primitive operations of BakeBot are more high-level such
as pouring or mixing. In the case of BakeBot, this mapping is primarily found through
forward search in a simulator. This simulator is based on a predefined state-action space
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for the kitchen. To allow finding a good mapping, a probabilistic reward function was
also learned from a dataset of recipes annotated with the correct sequence of states
and actions. During parsing of recipe instructions, BakeBot then uses this simulator
and reward function in order to find the most rewarding sequence of actions. Once
this sequence of primitive operations is known, BakeBot executes them one at a time
with each high-level operation first being refined into more low-level executable motion
operations. Just like TUM-Rosie and TUM-James (Beetz et al., 2011), both perceptual
and physical sensors are then used to guide the robot towards physically cooking the
actual dish. To conclude, a remark similar to the one for Beetz et al. (2011)’s research
should be made for BakeBot. Two real-world baking experiments were performed that
show the feasibility of robotic cooking, but the robots still needed human assistance
for some actions. Furthermore, the interaction between many different domains and
subsystems can lead to problems with robustness. A problem in NLU, perception or
robot control can quickly lead to overall failure in dish preparation. Improving all
these domains separately should make a future integrated approach more feasible and is
therefore worth investing in.

2.2 Benchmarking

When the field of AI first started to really form in the early 1950s and 1960s, the broader
goal was to create agents that are capable of simulating human-like intelligence (Haenlein
& Kaplan, 2019). During those days progress towards this goal was often assessed by
asking somewhat philosophical questions on what it meant to be intelligent, with AI
methods being seen as a model of some general cognitive function. The rise of machine
learning and especially deep learning, however, has led to a shift in measuring progress
towards evaluation of model performances on more application-based objectives (Raji
et al., 2021). Since then, benchmarks have taken a more important central position
in AI with obtained scores on standard benchmarks often deciding which models are
the current state-of-the-art. Clear examples of this can be seen in computer vision and
NLP where achieved scores on ImageNet (Russakovsky et al., 2015), GLUE (Wang et al.,
2018) and their derivatives have been cited as proof of a model’s utility from an academic
or commercial standpoint (Raji et al., 2021).

2.2.1 Definition

To ensure a common understanding of what a benchmark is, we will first describe what
a benchmark is actually composed of in the context of this thesis. This definition is
based on the early work of Jelinek in the 1980s who devised a Common Task Framework
to quantitatively assess success on computational linguistic tasks (Donoho, 2017) and
more recent views by standardization organizations such as the Standard Performance
Evaluation Corporation (SPEC), the National Institute of Standards and Technology
(NIST), the Transaction Processing Performance Council (TPC) and others (Bowman
& Dahl, 2021; Raji et al., 2021; von Kistowski et al., 2015).
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A benchmark consists of three major parts. First, each benchmark has a concrete
task or set of tasks for which model performance can be measured and compared. These
concrete tasks are generally a stand-in problem for some more abstract capability that
we want a model to demonstrate using specified input and output pairs. Secondly,
a benchmark provides a dataset or a set of datasets that contains at least test data.
Training data is often included but is not required. This data consists of manually,
semi-automatically or automatically generated samples that are representative for the
aforementioned tasks. The data is generally made at least partially available to users,
although submissions on privately held unknown test data are possible too. Thirdly,
benchmarks specify a way of evaluating a model’s performance on the given tasks by
summarizing success and failure of the model on test data using a single metric or a
small set of metrics. These metric scores are generally a single number, allowing quick
comparisons between different approaches. Finally, the community of users that adopt
the benchmark as a shared framework for model comparison is an important aspect
as well. Although it is not an immediate part of the benchmark setup, adoption by
researchers coming from academia or industry are integral in the eventual utility of the
benchmark.

2.2.2 Benefits & Criticisms

The longstanding development and popularity of benchmarks in AI can be explained
from the many benefits that come with benchmarking. The existence of standard bench-
marks, accepted by a certain research community, allows researchers to directly and
empirically compare results. At the same time, it also allows easier interpretation of
the results, since properties of the dataset are generally well-studied and better un-
derstood among peers (Hennessy & Patterson, 2017; Wagstaff, 2012). Moreover, the
recognition researchers receive when improving on state-of-the-art results encourages
and motivates them to focus on specific subfields in AI. Benchmarks can thus not only
measure progress, but in effect also steer progress by shifting the focus to particular
tasks inside a domain (Barbosa-Silva et al., 2022). This is visible historically, with the
fields where AI has made the most progress throughout the years being those in which
benchmarking has been systematically applied (Donoho, 2017). This progress should not
only be explained from researchers’ drive to more recognition, but also from the fact that
data curation and model evaluation can be a resource-intensive practice in terms of time
and monetary cost (Bowman & Dahl, 2021; Kandel et al., 2012). Communal sharing of
such resources through benchmarks, therefore, potentially allows speeding up individual
research by lowering the costs related to it (Koch et al., 2021). Despite these advantages,
issues with well-known benchmarks and general criticisms about benchmarking practices
have been brought to light recently.

A first major criticism revolves around the increased centralization of benchmark
creation. Koch et al. (2021) analyzed benchmark trends and discovered that widely used
datasets generally originated from a small set of high-profile organizations. Although
this is not intrinsically problematic, it might lead to a small number of elite institutions
consciously or subconsciously shaping general values and the research agenda in the field.
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Audits from popular datasets have revealed for example that well-known datasets have
a tendency of being biased towards Western countries and white male populations, both
in the field of computer vision (Buolamwini & Gebru, 2018; Prabhu & Birhane, 2021;
Shankar et al., 2017) and NLP (Dixon et al., 2018; Zhao et al., 2018). Furthermore,
the fact that most datasets that are currently provided in popular standard benchmarks
are very large-scale (e.g., ImageNet (Russakovsky et al., 2015) and GLUE (Wang et al.,
2018)) promote the use of resource-intensive models, requiring resources that might only
be available in larger institutions (Dotan & Milli, 2020).

A second criticism has to do with the increased focus of research on a small number
of standard benchmarks. Although increased standardization is beneficial for measuring
progress in the field, there are some possible problems related to an extensive focus on
too few standard benchmarks. First, using a variety of benchmarks could mitigate the
propagation of biases that exist in well-known benchmark datasets (Hutchinson et al.,
2022). Secondly, benchmark overfitting has been shown to occur causing performance
on standard benchmarks not always translating well to challenging real-world scenarios.
This can be due to models learning so-called ‘shortcuts’ and trends present in these
datasets (D’Amour et al., 2022; Geirhos et al., 2020) and an over-reliance on specific
benchmark metrics instead of other forms of in-depth quantitative or qualitative anal-
ysis (Hutchinson et al., 2022; Koch et al., 2021; Kümmerer et al., 2018). Meanwhile,
models that might not maximize scores on these metrics could have other beneficial prop-
erties related to interpretability, adaptability or resource requirements (Barbosa-Silva et
al., 2022; Kiela et al., 2021). Thirdly, despite the large scale and intended diversity of
recent standard benchmarks, quick saturation or near-saturation of benchmarks is preva-
lent (Barbosa-Silva et al., 2022; D. Zhang et al., 2021). Models are already achieving
super-human results on standard benchmarks such as SQuAD (Rajpurkar et al., 2016),
GLUE (Wang et al., 2018) and extensions made to combat this problem (Rajpurkar
et al., 2018; Wang et al., 2019). Such saturation can cause progress measuring to be dis-
torted as increasingly small improvements on these benchmarks might lack significance,
either from a statistical or a real-world utility perspective (Barbosa-Silva et al., 2022;
Hutchinson et al., 2022; Wagstaff, 2012). At the same time, however, many lesser known
benchmarks remain underused as they fail to find more widespread adoption within a
community (Barbosa-Silva et al., 2022).

2.2.3 Properties of a Good Benchmark

Benchmark design generally involves multiple, potentially conflicting requirements and
considerations which forces trade-offs (Huppler, 2009). Therefore, having multiple bench-
marks by different designers is always useful to the field. Nevertheless, there are some
properties a good benchmark should always strive to have based on what we know about
the high-level composition of a benchmark and what benefits and risks could be related
to it. We mostly based these properties on insights that von Kistowski et al. (2015)
provided into the development process of benchmarks by standardization organizations
SPEC, TPC and NIST. Since these organizations do not focus specifically on AI, we
further extended these insights with remarks from different researchers within the field
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of AI and NLP in particular.
The following sections will discuss five main properties that a good benchmark should

posses. These properties are:

1. Relevance

2. Reproducibility

3. Fairness

4. Verifiability

5. Usability

Relevance

Relevance is probably the most important property for any benchmark. If performing
well on the benchmark is of minimal use in the context of domain progress or real-world
utility, then communities will have no reason to actually pick it up. Design choices in
every component of the benchmark, i.e., the task, the dataset and the metrics, will have
an impact on its relevance. Therefore, it is paramount to transparently describe these
choices and their impact on the applicability of the benchmark (Huppler, 2009).

The first choice any benchmark designer should make is what the abstract, real-world
problem is that the benchmark should help solve. Once this is known, concrete tasks
should be developed that are as representative as possible for this abstract task. Despite
the recent popularity of benchmarks with broader general-purpose tasks (Russakovsky et
al., 2015; Wang et al., 2019), narrower context-specific benchmarks can be more relevant
in certain areas (Koch et al., 2021; von Kistowski et al., 2015). In both cases the tasks
should be challenging enough, so actual progress can still be made, and the intended
breadth of their applicability should be clearly indicated (Huppler, 2009).

Relevance of the task also depends on the relevance of the provided data. Curated
data should be diverse enough to allow adequate coverage and transfer of results to
real-world use cases. Besides data representativeness, the quality of a dataset is also
highly dependent on the quality of the data annotation process. This process should
be carefully designed, executed and thoroughly evaluated. This is especially true if
data annotation happens via non-expert crowdsourcing, which is common for recent
AI benchmarks (Rajpurkar et al., 2016; Russakovsky et al., 2015; Wang et al., 2018).
Furthermore, updates and extensions to the used dataset might be needed to ensure
benchmark longevity. The real-world problem might evolve over time requiring more
recent data or the benchmark might get saturated and thus lose its relevance (Barbosa-
Silva et al., 2022).

Finally, using the right metrics is crucial as well. Based on what is most appropriate
for the specified tasks, well-known existing metrics could be used or custom alternatives
might be a better option. Especially in NLP the use of alternative metrics is not un-
common (Blagec et al., 2020). In such cases, the metrics should be well-documented.
Although it is not frequently measured, aspects such as model scalability and resource
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need could be interesting to take into account as well from a real-world utility per-
spective (Ethayarajh & Jurafsky, 2020). The use of an additional diagnostic test set,
hand-crafted by experts, could further enhance analysis of a model’s strengths and weak-
nesses (Wang et al., 2018, 2019).

Reproducibility

Reproducibility has always been a cornerstone of the scientific method. Other researchers
should be able to independently repeat experiments and get the same result to ensure
trustworthiness (Gundersen & Kjensmo, 2018). Similarly, benchmarks that want to
accurately contribute to scientific progress should give consistent scores when the same
model is evaluated. Trustworthy comparison of methods is impossible if run-to-run
arbitrariness in scores would exist (Huppler, 2009; von Kistowski et al., 2015).

In case of benchmarks with leaderboards, independent reproduction of findings by
others can be further facilitated by allowing or even requiring researchers to upload an
accompanying paper or text describing the model they used to achieve their score (Wang
et al., 2019). Such a benchmark feature can even promote benchmark usage as it further
gives credit and enhances visibility of researchers’ work.

Fairness

Although unfairness towards certain people as a consequence of under- or misrepresen-
tation in popular datasets is definitely an important topic in benchmark design nowa-
days (Paullada et al., 2021), mitigating that type of unfairness or promoting unbiasedness
is more a part of ensuring relevance in benchmark design. Benchmark fairness should
be interpreted rather as providing an environment that allows fair competition between
benchmark participants. This means the method of evaluation should be clear, well-
described and also portable so anyone can evaluate their models based on their own
merits (Blagec et al., 2022; Huppler, 2009). Some constraints will generally be put on
evaluations and submissions, but these should be well-motivated. The reasons for such
restrictions can be either technical in nature or measures to avoid taking advantage of
the simplified nature of concrete tasks and subsequent result pollution (von Kistowski
et al., 2015).

When it comes to benchmarks with leaderboards, there are two common choices
made in this regard. First, unannotated test data is released on which participants
should run their models and then submit results for. Benchmark organizers then assess
the performance themselves in an automated way. This ensures that no restrictions are
placed on the type of used methods and avoids that benchmark organizers have to run
submitted models on test data themselves. The latter could be technically infeasible
for larger test sets (Russakovsky et al., 2015), even though it might prevent some abuse
by having prior knowledge about the test data. Secondly, the number of submissions
participants can make in a certain timespan is generally limited. This should help prevent
participants that try to overfit their models to the test data (Wang et al., 2019).
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On a final note, benchmarks that are designed through committee consensus are
often perceived as fairer since benchmark design always requires trade-offs. Such a
design approach might not always be efficient or even feasible, but it does make sure
that compromises are made in a way that multiple parties agree on its fairness (von
Kistowski et al., 2015).

Verifiability

Verifiability corresponds to providing a high degree of confidence that benchmark results
are accurate. A frequent choice made in this context is that part of the test data is kept
privately, i.e., at least the annotations. Participants then do not assess and publish
performance themselves, but a system of automatic validation is responsible for this.

From an academic perspective, verifiability is also closely related to reproducibility
of the results. Verifiability could be improved by giving or requiring more details on
submission than needed, e.g., showing model insights from a diagnostic test set or re-
quiring an accompanying paper (von Kistowski et al., 2015). Other researchers can then
more easily reproduce and verify the results, which simultaneously ensures participants
followed benchmark rules.

Usability

Usability relates to a benchmark’s ease of use. Both from an economical investment
perspective as well as a time and effort perspective. From an economical perspective,
the cost of running a benchmark should not be excessive. Although large dataset sizes
might be warranted in some cases, the trade-off with the associated expenses of being
able to access, train and evaluate on it should be considered as well (Huppler, 2009).

From a time and effort perspective, ease of use can be increased by providing good
benchmark discoverability, quick access, adequate documentation on its use and perhaps
software tools that support the development or evaluation of models on benchmark
tasks (von Kistowski et al., 2015; Wang et al., 2019).

Finally, open and permissive licensing can facilitate reuse, repurposing and extensions
of existing benchmarks (Conneau & Kiela, 2018; Wang et al., 2019; Williams et al., 2018),
although this is generally more aimed towards enhancing affordability for benchmark
designers rather than benchmark users.

2.3 Recipe Corpora

The popularity of recipe-related research and benchmarking in AI has led to the creation
of multiple public databases, competitions and benchmark datasets in this domain (Batra
et al., 2020; Chang et al., 2018; Gaillard et al., 2017; Salvador et al., 2017). Most of these
benchmarks, however, have been created to solve abstract tasks that are not directly
related to recipe semantics in the context of execution. A summarizing overview of
other recipe-related benchmarks for a variety of tasks can be found in Appendix A, but
in this section we will focus the discussion on three publicly available unimodal recipe
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benchmarks that do focus on understanding recipes in the context of execution. These
benchmarks are the Carnegie Mellon University Recipe Database (CURD), the Recipe
Flow Graph (r-FG) corpus and the Recipe Instruction Semantics Corpus (RISeC).

2.3.1 Carnegie Mellon University Recipe Database

In the context of the SOUR CREAM project (System to Organize and Understand
Recipes, Capacitating Relatively Exciting Applications Meanwhile), Tasse and Smith
(2008) developed both the concise first-order logic based MILK language and the CURD
database composed of 260 recipes translated into this MILK language, of which a sample
annotation is given in Figure 2.2.

< l i n e>
<o r i g i n a l t e x t>

Pour onto a l a r g e buttered cook i e shee t .
</ o r i g i n a l t e x t>
<annotat ion>

c r e a t e t o o l ( t1 , “large cookie sheet”)
</ annotat ion>

</ l i n e>
< l i n e>

<o r i g i n a l t e x t>
Pour onto a l a r g e buttered cook i e shee t .

</ o r i g i n a l t e x t>
<annotat ion>

s e t ( t1 , “butter cookie sheet”)
</ annotat ion>

</ l i n e>
< l i n e>

<o r i g i n a l t e x t>
Pour onto a l a r g e buttered cook i e shee t .

</ o r i g i n a l t e x t>
<annotat ion>

remove ( ing9 , t0 )
</ annotat ion>

</ l i n e>
< l i n e>

<o r i g i n a l t e x t>
Pour onto a l a r g e buttered cook i e shee t .

</ o r i g i n a l t e x t>
<annotat ion>

put ( ing9 , t1 )
</ annotat ion>

</ l i n e>

Figure 2.2: A sample taken from the ‘Almond Buttercrunch’ recipe in CURD (Tasse
& Smith, 2008) showing the MILK annotations for “Pour onto a large buttered cookie
sheet.”
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Minimal Instruction Language for the Kitchen

MILK is not intended to be able to identify every detailed action that occurs during
recipe execution, but it does provide a way of expressing the temporal step order and
the relationships between steps through predicate argument sharing. Recipes should then
be interpreted as a sequence of world states describing the introduction of ingredients,
their usage and eventual serving as a final dish. Differences between subsequent world
states occur implicitly as the result of applying a specified sequence of actions. Parsing
recipes thus consists of translating natural language sentences to such a sequence of
machine-readable MILK predicates.

To form these machine-readable representations MILK defines three primitive types
and twelve actions. The primitive types are ingredient, tool and string. The former two
describe entities that can be created or deleted on introduction or serving, while the
latter is meant to provide a way to describe human-readable comments and additional
information. All of them can be used in the aforementioned action predicates that
correspond to void functions with side effects changing the state of the world. Such a
world state can be described as a tuple < I, T, S, Id, Td, C >, with I the set of existing
ingredients, T the set of existing tools, S the set of used strings, Id and Td specifying
which string relates to which ingredient or tool respectively and C specifying which tools
contain which ingredients.

Possible actions influencing these states are then create ing and create tool for cre-
ation, combine and separate for combining and separating ingredients, put and remove
for adding or removing an ingredient in a tool, cut, mix and cook for modifying an ingre-
dient in some way, set for modifying a tool in some way, leave and chefcheck to represent
not using an ingredient for a specified time or until a condition is fulfilled, serve to mark
the deletion of an ingredient at the end of the recipe when serving the dish and lastly an
open-ended action do that can be used to describe any action that cannot be expressed
using the other actions.

CURD Composition

The aim of the SOUR CREAM project is to support the development of new techniques
for semantic parsing based on cooking recipes. CURD was created in this context and
provides a publicly available annotated dataset for this task.

Although the used MILK annotations themselves have been thoroughly documented
in an accompanying technical report, descriptions of the data collection and annotation
process are lacking. No clear information about the data source is given and Tasse and
Smith (2008) only stated that annotations were made by 18 annotators using a custom
Java-based GUI tool without specifying annotator experience or inter-annotator agree-
ment. Moreover, the technical report indicates there should be 300 annotated recipes
and 350 unannotated recipes in the database while CURD actually only contains 260
annotated recipes. No further information about this discrepancy could be found. The
technical report does mention, however, that the recipes currently available in CURD
all start with a letter from the first half of the alphabet and further work is thus needed
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to ensure the dataset is a representative random sample.
Tasse and Smith (2008) also did not explicitly propose any metrics for evaluating

performance on their dataset nor did they make any prior train-test splits, automatic
evaluation tools or a leaderboard. A specialized website2 has been created, but it only
provides the dataset itself and the accompanying paper. However, Tasse and Smith
(2008) did perform some preliminary parsing experiments themselves in which they used
the ratio of correctly identified sentences and the ratio of completely correct instruction
series as accuracy-based metrics

Community Adoption

CURD has been an inspiration for other recipe-related benchmark datasets, such as the
SIMMR database aimed at the task of recipe comparisons (Jermsurawong & Habash,
2015). However, it currently has not achieved widespread adoption within an NLP
community. This could perhaps be explained by the fact that it does not sufficiently
meet most of the benchmark properties that we presented in section 2.2. As noted by
Tasse and Smith (2008) themselves in their paper, further extensions are needed and
these extensions have not yet been made.

2.3.2 Recipe Flow Graph Corpus

After prior research into a machine learning approach for parsing recipe texts into
flow graphs required creating their own corpus (Mori et al., 2012), Mori, Maeta, Ya-
makata, and Sasada (2014) acknowledged the lack of publicly available corpora aimed at
recipe understanding. Therefore, they created two corpora consisting of respectively 266
Japanese recipes and 300 English recipes annotated with a flow graph representation in
a spreadsheet format. A sample from the English corpus is given in Figure 2.3.

Recipe Flow Graphs

Recipe Flow graphs are computationally tractable, rooted DAG representations that
provide an abstraction of linguistic expressions which only preserves information that is
relevant for correctly executing steps towards creating the final dish (Yamakata et al.,
2020). Nodes of the DAG are labeled with so-called recipe named entities (r-NEs) that
correspond to food, tools, actions, states, durations or quantities. Most of the node labels
are similar for the Japanese and English corpus, with the exception of some additions
that were needed to account for linguistic or general cooking phenomena in English
recipes that are not common in Japanese recipes. An overview of these labels can be
found in Table 2.1. Edges of the DAG denote relationships between the aforementioned
r-NEs. These relationships can be sequencing, part-of, equality, usage and other types
of relationships. An overview of these labels can be found in Table 2.2.

2https://www.cs.cmu.edu/∼ark/CURD
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1 1 1 Preheat VV0 Ac=B
1 1 9 the AT O
1 1 13 oven NN1 T=B
1 1 18 to I I O
1 1 21 170 MC St=B
1 1 25 C ZZ1 St=I
1 1 27 / CC O

(a) *.list file with r-NE tags

1 1 13 t 1 1 1
1 1 21 o 1 1 1

(b) *.flow file with flow graph edges

Figure 2.3: A sample taken from the ‘White Chocolate Chip Cookies’ recipe in r-FG (Ya-
makata et al., 2020) showing how a DAG can be constructed for “Preheat the oven to
170°C.” using a list and a flow file. In Figure 2.3a the elements on each line correspond
to the number of the instruction, the number of the sentence in the instruction, the
character number indicating the start of the word in the sentence, the actual word, a
POS tag and an r-NE tag with additional BIO information (Ramshaw & Marcus, 1995).
The first three elements on each line also serve as a node ID. In Figure 2.3b the first
three elements indicate the origin node ID, the fourth element represents the edge label
and the last three elements indicate the destination node ID.

Tag Full Tag Name Description English only

F Food An eatable product No
T Tool A cooking tool No
D Duration Duration of cooking No
Q Quantity Quantity of food No
Ac Action by chef A chef’s action No
Ac2 Discontinuous Action Second part of a chef’s action Yes
Af Action by food Action of a food No
At Action by tool A tool’s action Yes
Sf Food state A food’s state No
St Tool state A tool’s state No

Table 2.1: Recipe named entity (r-NE) tags used in the Recipe Flow Graph Cor-
pora (Mori, Maeta, Yamakata, & Sasada, 2014; Yamakata et al., 2020)
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Japanese Label English Label Description

subj Agent Subject
d-obj Targ Direct object
i-obj Dest Indirect object
F-comp F-comp Food used as a tool, e.g., seasoning
T-comp T-comp Tool used in an action
F-eq F-eq Identical food
F-part-of F-part-of Reference to a part of a food
F-set F-set Reference to a combination of foods
T-eq T-eq Identical tool
T-part-of T-part-of Reference to a part of a tool
A-eq A-eq Identical action
V-tm V-tm Verb of a clause for timing or conditions
other-mod other-mod Other relationships

Table 2.2: Flow graph edge labels used in the Recipe Flow Graph Corpora (Mori, Maeta,
Yamakata, & Sasada, 2014; Yamakata et al., 2020)

Corpus Composition

Mori, Maeta, Yamakata, and Sasada (2014) state that their corpus can lead to many
potential applications, ranging from training models for word segmentation and NER
to building intelligent search engines and automatic recipe generators. The main goal,
however, is to be able to perform natural language text analysis that can lead to recipe
understanding by obtaining a structured meaning representation.

The r-FG corpora were created to help strive towards these objectives within the re-
search community, but at the time of writing neither corpus is actually publicly available.
Dedicated websites have been created for both the Japanese corpus3 and the English cor-
pus4, but the Japanese website states that the corpus is still under construction and the
English website only provides the corpus on request after an approval process via email
in which you specify your name, affiliation and purposes.

The websites, however, do already document how to interpret the annotations, how
the data was collected and include some general data statistics. The Japanese dataset is
composed of Cookpad5 recipes, with 200 recipes being randomly selected and 66 recipes
additional recipes being for the common Japanese dish nikujaga. The English dataset
is composed of Allrecipes.com6 recipes, with 200 recipes being randomly selected and
100 recipes being sampled from different dish categories based on popularity criteria.
Similar information has also been mentioned in the accompanying papers (Mori, Maeta,
Yamakata, & Sasada, 2014; Yamakata et al., 2020).

Furthermore, the accompanying papers also detail the annotation process that was

3http://www.lsta.media.kyoto-u.ac.jp/resource/data/recipe/home-e.html
4https://sites.google.com/view/yy-lab/resource/english-recipe-flowgraph
5https://cookpad.com
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followed. Both corpora first used an automatic NER tagger of which the output was
then manually corrected for obtaining better node labels. Edge annotations are added
manually in a spreadsheet by non-expert annotators. For the English corpus, it was
mentioned that two annotators were used and that a high level of inter-annotator agree-
ment was achieved. Similar information was not provided for the Japanese corpus, but
they did use a custom program to automatically check whether a spreadsheet is actually
a rooted DAG as a form of annotation evaluation.

No metrics were explicitly proposed by Mori, Maeta, Yamakata, and Sasada (2014) or
Yamakata et al. (2020) for evaluating performance on their datasets. However, Yamakata
et al. (2020) did perform some initial experiments on their English corpus in which
they used precision, recall and F1 scores to present performance results on node label
predictions and on edge label predictions.

Community Adoption

The Japanese r-FG corpus has known some use in the Japanese research community,
both directly in the development of recipe parsers (Maeta et al., 2015; Yamakata et al.,
2016) as well as indirectly by being repurposed for the development of other multimodal
benchmarks (Hashimoto et al., 2014; Nishimura et al., 2020). It should be noted, how-
ever, that in all of this research the original creators of the r-FG corpus were involved.

The English r-FG corpus has only been used as a training set for a recipe parser in
the context of the development of a new English recipe corpus called Aligned Recipe
Actions (ARA; Donatelli et al., 2021). ARA aims to improve the alignment of actions
between different recipes to gauge their similarity (Donatelli et al., 2021). It used the
r-FG corpus as a training set in order to learn how to extract simplified action graphs
without ingredients or tools from recipes. However, only the dependency information
that is present in the r-FG corpus was used while the rest of the annotation information
was ignored.

It currently does not seem like either of the corpora have achieved widespread adop-
tion within an NLP community, especially not in an English NLP community. The
dataset itself is well-documented, but it is not so easily accessible. Additionally, many
pages on the website for the English r-FG corpus are currently still only available in
Japanese. Furthermore, the goal of the corpora mainly seems to be oriented towards
providing a development dataset for parsers as no metrics or evaluation tools are given.

2.3.3 Recipe Instruction Semantics Corpus

Jiang et al. (2020)’s aim is to provide a corpus that allows recipe parsing to achieve a basic
understanding of its instructions, while limiting the need for domain-specific assumptions
in the form of using predefined robot instruction predicates as in CURD (Tasse & Smith,
2008). To support this goal, they created their own annotated corpus of 260 recipes
annotated with recipe entity and relationship labels. A sample of this corpus is given in
Figure 2.4.
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T15 AC 297 301 Pour
T16 TOOL 307 336 a l a r g e buttered cook i e shee t
R10 Arg3 GOL Arg1 : T15 Arg2 : T16
R11 Arg1 PPT X Arg1 : T15 Arg2 : T11

Figure 2.4: A sample taken from the ‘Almond Buttercrunch’ recipe in RISeC (Jiang
et al., 2020) showing the entity and relationship annotations for “Pour onto a large
buttered cookie sheet.”. The elements on each line starting with T correspond to the
entity ID, entity type, recipe start position of the expression, recipe end position of the
expression and the actual word sequence. The elements on each line starting with R
correspond to a relation ID, relation type and entities involved in the relation following
PropBank conventions (Kingsbury & Palmer, 2002).

RISeC Representation Structure

To ensure generality of the used semantic understanding principles, RISeC graphs follow
the methodology of PropBank (Kingsbury & Palmer, 2002) to assign semantic roles to
recipe-related entities. This methodology is based on verb frames, in which a verb spec-
ifies an action and relations originating from this verb link it to arguments or modifiers.
The relation types are adopted from PropBank, with some extensions where needed,
while the entity types are custom recipe-related entities to represent an Action, Food,
Tool, Duration, Temperature, Condition, Purpose or Other for anything else. Further-
more, an additional Zero Anaphora Verb label can be added to a verb frame indicating
an implicit reference to an earlier concept.

RISeC Composition

Jiang et al. (2020) state that semantic comprehension of recipes can be seen as the
combination of three NLP subtasks, namely entity recognition, relation extraction and
zero anaphora resolution. RISeC was created to aid in furthering progress on these three
tasks by providing a publicly available annotated dataset of 260 recipes.

This dataset can be accessed via a GitHub repository7 and has a predefined split
into a training, development and test set containing a random selection of respectively
50%, 20% and 30% of the samples. This split is directly taken from the SIMMR
dataset (Jermsurawong & Habash, 2015), which served as the data source for RISeC.
Since SIMMR in turn uses the same recipes as CURD, RISeC actually reuses CURD
recipes with different annotations and a predefined split. This means the representative-
ness issues mentioned for CURD are likely also present in RISeC. Moreover, information
about the annotation process is also sparse with Jiang et al. (2020) only stating that
three expert annotators were involved and they were in close communication with each
other.

Although a train-test split was proposed, no additional evaluation tools are made

7https://github.com/YiweiJiang2015/RISeC
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available. However, Jiang et al. (2020) did perform some baseline experiments that
evaluated identification performance for each entity and relation type separately via
precision, recall and F1 scores. They also evaluated performance on each of the three
aforementioned subtasks via micro-F1 scores.

Community Adoption of RISeC

RISeC might still be relatively recent, but at this moment it has not achieved adoption
within an NLP community. It has only been used as inspiration for another recipe-
related dataset called Cookdial (Jiang et al., 2022) which aims to improve research on
task-oriented dial systems and has been developed by the original creators of RISeC.
The lack of adoption could perhaps be explained by the fact that it is based on the
same data as CURD, which stated to have some representativeness problems, and the
fact that Jiang et al. (2020) state that RISeC’s structured representation might need
further extensions before being able to solve queries that require explicit reasoning or
state tracking.

2.4 Why We Need a New Benchmark

Nearly a decade has passed since Bollini et al. (2013)’s experiments with robotic recipe
execution, with research seemingly still not being close to delivering robust robot chefs
any time soon. Recipe-related research has definitely continued to know ongoing popu-
larity, but despite the historically shown benefit of speeding up progress there is currently
no suitable benchmark for recipe understanding that has been widely adopted. Valid
efforts have been made towards providing such a benchmark, but not CURD (Tasse &
Smith, 2008) nor the English r-FG corpus (Yamakata et al., 2020) nor RISeC (Jiang
et al., 2020) seem to have known much success in the NLP community so far. This
is undoubtedly due to a variety of reasons, but certain deficits when it comes to the
benchmark properties mentioned in Section 2.2.3 might play a role in this as well.

One of the biggest issues with the currently available corpora is the fact that they only
provide an annotated dataset, without specifying how performance on this dataset should
be evaluated. Using the right metrics is an intrinsic part of ensuring that benchmark
results are both comparable and transferable to the real world, so development of one or
more well thought-out metrics seems essential. This would not only increase benchmark
relevance, but such a fixed common metric would also improve fairness, verifiability
and reproducibility aspects. Even usability might be improved as researchers would not
have to devise evaluation methods themselves when performing experiments with such
datasets. This is especially true in case automatic evaluation tools would be provided
as well, which the existing corpora also lack. Besides the absence of metrics other issues
such as inadequate documentation, difficult data access and all annotated data being
available as training data will presumably have led to lower adoption rates as well.

Furthermore, Barbosa-Silva et al. (2022) have investigated other attributes that
might be correlated to popularity of benchmarks in the domains of NLP and computer
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vision. Most of these attributes are either irrelevant for a more context-specific bench-
mark, e.g., being as general-purpose as possible, or are generally outside of a researcher’s
immediate control, e.g., having a well-known first author from a top institution. How-
ever, Barbosa-Silva et al. (2022) did find that benchmarks with a public leaderboard
often have better adoption rates than benchmarks without. On the other hand having
competitions related to a benchmark do not seem to have an effect, which might be an
indication that a leaderboard’s competitive nature is not its main point of attraction.
Leaderboard setups also come with well-defined or automatic evaluation methods, which
could be an underlying reason for higher adoption rates and thus indeed seems to be an
important focuspoint.

In conclusion we can state that even though trade-offs are always required in bench-
mark design, there are some clear improvements that can still be made when looking at
existing recipe benchmarks. Moreover, a lot of advancement is also still possible in the
domain of NLU for recipes. For these reasons, we will design and deliver a new bench-
mark in this thesis that will hopefully be able to measure, steer and speed up progress
towards better recipe understanding.

31



Chapter 3

Defining the Benchmark

3.1 Introduction

This chapter gives an in-depth description of our new benchmark for recipe understand-
ing, which we named MUHAI Recipe Execution Benchmark and have made publicly
available online at https://ehai.ai.vub.ac.be/recipe-execution-benchmark. We will pro-
vide insight into our general design process and elucidate the reasoning behind made
choices. As with any benchmark, trade-offs were needed and in this chapter we will
defend the ones that were made by us.

We will first present the three main components of our benchmark, using the bench-
mark definition given in section 2.2.1. Section 3.2 briefly outlines the concrete stand-in
task we are using to approximate the task of recipe understanding in a practical set-
ting. In section 3.3 we will discuss data curation, annotation and general composition
of the dataset itself. The evaluation component, which is an important focus in our
benchmark, will be discussed in-depth in section 3.4. Although many design choices will
have already been explained in the aforementioned sections, section 3.5 will conclude
this chapter with a discussion on how our benchmark tries to satisfy the properties of a
good benchmark which were mentioned in section 2.2.3. A more detailed analysis of the
challenges of tackling our benchmark combined with some specific examples are given
later, namely in Chapter 4.

3.2 Task

The aim of the newly created benchmark is to aid in progressing the specific task of
understanding recipes that are written in natural language. This is a prerequisite for
being able to successfully execute them in a real-world setting and thus for eventually
being able to achieve robotic recipe execution as proposed in earlier research (Beetz
et al., 2011; Bollini et al., 2013). The concrete task we propose in this context is the
parsing of English recipe texts into a special-purpose procedural semantic representation
language. This language is based on similar concepts as MILK (Tasse & Smith, 2008),
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but is more fine-grained in order to adequately capture all the necessary recipe semantics
and express deeper understanding.

Our formal language defines predicates that correspond to executable primitive op-
erations representing meaningful actions within the cooking domain. Arguments of the
predicates are logical variables or constants which can represent a variety of cooking-
related concepts such as ingredients and tools. Multiple primitive operations can then be
connected through sharing of these arguments to form an implicit DAG which represents
a complete recipe. We will henceforth call such DAGs semantic networks, of which an
example network extract is given in Figure 3.1. If the right semantic network has been
obtained through recipe parsing, taking the appropriate actions to cook the intended
dish then comes down to executing the resulting network given correct implementations
for the used predicates.

3.2.1 MUHAI Cooking Language

Our representation language MUHAI Cooking Language (MCL) provides a way of trans-
lating a sequence of natural language sentences into a machine-readable semantic network
of executable predicates. Through argument sharing a notion of dependencies between
steps is encoded as well in this predicate-argument structure. Such dependencies are
derivable from the network by realizing that a shared argument used as input in one
predicate is only available once it is provided as output in the other predicate.

Similar to MILK (Tasse & Smith, 2008), recipe execution based on MCL can be
interpreted as a sequence of consecutive kitchen states describing the introduction of
ingredients, tools and their usage eventually leading to the final dish. However, contrary
to MILK, our representation language explicitly includes an input and output kitchen
state as arguments in each predicate. The reason for this is twofold. First, including
the states makes it clearer that predicate execution leads to a new state of the world
and thereby helps in correctly interpreting predicates. It thus improves human read-
ability of the network in addition to machine readability. Secondly, having direct access
to input and output kitchen states before performing an action facilitates performing
mental simulations, as proposed by Beetz et al. (2011), which could enhance reasoning
capabilities and prevent unintended consequences. Backtracking to investigate the effect
of alternatives is possible for example.

Arguments

Arguments of primitive operations can be divided into five broad categories covering
most kitchen-related concepts and objects. These categories are kitchen states, food,
tools, mode specifiers and quantity specifiers. The arguments themselves can either be
variables or constants, with the former mostly being used when arguments need to be
propagated throughout the semantic network via argument sharing between primitives.

Kitchen States A kitchen state represents the relevant world in the context of cooking
a dish. This includes indicating the availability of food preparation areas, appliances,
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Figure 3.1: Semantic network for beating together some warm butter and white sugar.
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cooking utensils, food products and their properties at that point of execution. These
properties could concern low-level physics-based characteristics, e.g., the temperature of
cookies, or more high-level abstract cooking characteristics, e.g., specifying that cookies
are ‘baked’. As mentioned before, they are mostly provided to facilitate performing
mental simulations and improve execution order readability.

Food Food can denote base ingredients, intermediary food products or the final dish.
Furthermore, food arguments can be used to specify ingredients in a conceptual or a
referential way. In the conceptual case, we use a food argument to specify that we
need some ‘butter’ for example without indicating which specific instance of ‘butter’ we
should use, e.g., ‘grease the pan with some butter’. In the referential case on the other
hand we do refer back to a specific instance of ‘butter’ that should be used, e.g., ‘add
the proportioned butter’.

Tools Tools can denote cooking utensils as well as cooking appliances and other kitchen
commodities that serve an ancillary capacity. Utensils are mostly smaller tools such as
a knife or a whisk while appliances are larger machines such as an oven or a fridge.
Kitchen commodities cover food preparation and storage areas such as a countertop,
kitchen cabinets or pantries.

Mode Specifiers Mode specifiers indicate the manner in which an action should be
performed, e.g., in the instruction ‘shape the dough in a crescent shape’ the indication
of ‘in a crescent shape’ specifies the mode of the shaping action.

Quantity Specifiers Quantity specifiers can be used to provide numerical information
that is important for correct execution of a cooking action. This includes specifications
of durations, temperatures or weight and volume measurements. Generally such a spec-
ification consists of two arguments that should be interpreted together. One argument
specifies the actual numerical value while the other argument specifies the unit of mea-
surement that is needed to correctly interpret the magnitude of this numerical value. In
the expression ‘bake for 10 minutes’ both a numerical argument ‘10’ as well as a unit
argument ‘minute’ is needed in order to correctly execute the baking action for the right
duration.

Primitives

The predicates in a semantic network correspond to the atomic actions that an artificial
agent is able to perform. A level of abstraction was chosen so primitives would specify
atomic actions that are closely related to cooking, e.g., a ‘bake’ operation, instead of
more general fine-grained operations such as picking up or putting down objects. We
leave these more general operations as implementation-dependent choices, similar to the
representation language used in the experiments of Bollini et al. (2013).
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Although the chosen implementation of each predicate will in effect determine its
practical execution, each primitive does have an intended meaning in MCL. Currently
our representation language consists of 38 primitive operations representing common,
sufficiently distinct cooking actions. Broad categories of the type of primitives are dis-
cussed in the following paragraphs and a detailed explanation of each separate primitive
is available in Appendix B and the benchmark’s accompanying documentation. Some
primitives can in practice be categorized under multiple categories, in which case we
mention them in the one that best suits their most prominent behavior.

Kitchen State Loading There is one special-purpose primitive that is expected to
be present in every MCL semantic network, which is get-kitchen. This primitive is
responsible for loading in the initial kitchen state and thus for providing the necessary
contextual information for interpreting a recipe. The initial kitchen state could influence
the interpretation of recipe texts, because it could alter what is possible and thus what
the semantic network should look like to allow recipe execution.

Location Altering There are primitives needed to locate and partially or wholly move
ingredients or tools. The primitives fetch and fetch-and-proportion can be used to find
tools or ingredients and bring them to a kitchen work area. The primitives transfer-
contents and transfer-items will transfer food products from one location to another
in a less or more careful manner while adhering to a certain placement pattern for the
latter primitive.

Food Combination Almost every recipe has operations related to the combination
of food products to form other food products. Homogeneous mixtures can be made via
the primitives mix, beat or shake, while a more heterogeneous mixture can be created
through the use of mingle. The first two primitives are mostly used to create dough-like
products, while mingling is generally used to create something like salads. Shaking will
mostly be used to further combine liquids.

Combining food products in a more layered fashion is supported through the use of
other primitives such as spread, sprinkle and dip. These will all use a different mechanism
to create an outer layer made from a food product for another food product or potentially
even for a tool.

Food Separation Operations related to separating food products to form multiple
other food products are also quite common. Our simulator supports two types of sepa-
rations. The first type effectively splits up a food product into different types of other
food products. This is the case for the primitives sift, drain, crack, separate-eggs, peel
and seed that can for example be used to split off egg shells, yolks and whites from eggs
or peels and seeds from vegetables. The second type splits up a food into multiple smaller
versions of the same food product, which is the case for portioning-type primitives such
as portion-and-arrange and cut.
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Food Manipulation Many cooking actions change the properties of a food product.
These properties could be related to shape, texture, temperature and other physics-
based or abstract cooking-related characteristics. Some might require the use of tools,
while others just require manual manipulations or waiting. Primitives in this category
are shape, mash, flatten, melt, fry, boil, bake, wash, bring-to-temperature, refrigerate
and leave-for-time. The primitive leave-for-time is included here because it might have
a cooling effect based on differences between the food’s temperature and the ambient
temperature.

Tool Manipulation Many cooking actions change properties or the general state of
a tool. These changes can have an impact on the usability of the tool for certain other
actions. MCL supports three types of tool manipulations. The first type concerns chang-
ing settings of for example electrical tools, which is done by the primitive preheat-oven.
The second type concerns addition or removal of other tools to modify the functionality
of a tool. Using the primitives cover, uncover and line on a container will change the
behavior of other primitives that use that container later on. Lastly, the addition of food
products could also modify the functionality of a tool in similar way as the second type.
Such additions are possible via the primitives grease and flour.

3.3 Dataset

The data that will be provided with our benchmark is a test set that is composed of
publicly available English recipe texts, accompanied by gold standard solutions. No
training data has been provided, which is a deliberate design choice. This choice was
made for two main reasons. The first reason was preventing the problem of benchmark
overfitting. Completely separating test and training data collection could potentially
avoid correlations between both that can be easily discovered by large data-intensive
models while being undetectable by humans (Barbu et al., 2019). Only providing a
test set could therefore lead to better generalization of the results. Secondly, the ab-
sence of a training dataset promotes participation of a larger variety of models. Since
we put no limitations on the training data that can be used, a larger variety of both
resource-intensive and resource-efficient approaches have a fairer chance at showcasing
their unique benefits. If we would have already provided a large-scale labeled training
set for example, it generally overly promotes supervised deep learning methods (Dotan
& Milli, 2020).

3.3.1 Data Composition

The current test set in our benchmark is composed of thirty recipes from five different
online sources of English recipes. These sources are AllRecipes.com1, SimplyRecipes2,

1https://www.allrecipes.com
2https://www.simplyrecipes.com
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Food.com3, The Spruce Eats4 and Cooks.com5. Five different sources were used to
ensure a bigger variety in writing style and recipe formats, which could prevent some
potential biases that might have been present otherwise. SimplyRecipes for example
only publishes recipes after they have been thoroughly reviewed, tested and potentially
rewritten by experts while Cooks.com has more recipes written by cooking enthusiasts
and laymen.

Although five different sources for thirty recipes seems adequate, thirty recipes in
itself cannot possibly generalize to the capability of cooking every possible dish. This
design choice, however, seemed inevitable in the short term from a practical standpoint.
Significant time and effort had to be put into annotation and the development of evalu-
ation methods if we wanted to ensure a high enough quality. Considering the available
resources, a trade-off had to be made between benchmark quality and dataset quantity.
Therefore, we eventually chose thirty recipes in which many of the linguistic challenges
are present that have been discovered in previous research, which were mentioned in
section 2.1.2 and will be further discussed in Chapter 4. Additionally, we chose to have
our recipes focus on only two types of dishes, namely salads and baked goods. These
subdomains seem distinct enough to require a more general understanding of the cooking
process in order to perform well on both. Moreover, if our benchmark would lead to
real-world experiments with robotic execution it is also more probable that only a small
number of recipes will be focused on at first instead of hundreds, as this was also the
case in earlier experiments (Beetz et al., 2011; Bollini et al., 2013).

Nevertheless, it should be noted that our benchmark setup is currently more aimed
at surveying the current landscape by providing an opportunity to really analyze existing
issues and showcase the benefits of different approaches. Such a setup is definitely useful
for progressing the field further, but it cannot be seen as a reliable measurement of how
far the field has already progressed globally due to the limited test set size. Further
extensions can and probably will be made in the future, however, to cover more dish
types and to allow the benchmark to be a more global progress indicator as well.

3.3.2 Data Format

Since all recipes currently originate from online sources, they might be subject to change
or even disappear over time. Therefore, we extracted the relevant recipe information from
those websites and included it into our benchmark instead of referring to the original
source. A metadata file, however, does mention the source and access date for each of
the extracted recipes.

Although the presentation format of each recipe might be slightly different in the
original source, we chose to use a consistent and structured XML format to represent
the recipes in our benchmark. Being able to create models that can extract necessary
recipe information from different websites using different representation formats could
be interesting research as well, but it is not the focus of this benchmark.

3https://www.food.com
4https://www.thespruceeats.com
5https://www.cooks.com
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The structured format used in our benchmark consists of four important components.
First, a recipe ID is included which is required to identify the recipe a prediction is
for. Secondly, the human-readable recipe title is mentioned which could be useful as
contextual information since it often states the type of dish that should be prepared.
Thirdly, a recipe file also has a list of all initial ingredients that will be used to prepare the
dish. Lastly, each file also contains a list of recipe instructions that should be executed
in order to prepare the final dish starting from the initial ingredients. An example recipe
file containing all these components is shown in Figure 3.2

<r e c i p e>
<id>easy=banana=bread</ id>
< t i t l e>Easy Banana Bread</ t i t l e>
< i n g r e d i e n t s>

< i n g r ed i e n t>60 grams butte r</ i n g r ed i e n t>
< i n g r ed i e n t>2 eggs</ i n g r ed i e n t>
< i n g r ed i e n t>200 grams sugar</ i n g r ed i e n t>
< i n g r ed i e n t>3 bananas , mashed</ i n g r ed i e n t>
< i n g r ed i e n t>1 tsp . v a n i l l a</ i n g r ed i e n t>
< i n g r ed i e n t>200 grams s e l f =r i s i n g f l o u r</ i n g r ed i e n t>

</ i n g r e d i e n t s>
< i n s t r u c t i o n s>

< i n s t r u c t i o n>
Cream toge the r butter , eggs and sugar un t i l smooth .

</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Add bananas and v an i l l a ; beat we l l .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Mix in f l o u r .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Bake at 165°C fo r about 1 hour .
</ i n s t r u c t i o n>

</ i n s t r u c t i o n s>
</ r e c i p e>

Figure 3.2: The structured representation of the ‘Easy Banana Bread’ recipe, as it is
included in our benchmark. A recipe consists of an id, a title, an ingredients list and an
instructions list.

3.3.3 Data Annotation

Annotation Format

As mentioned in section 3.2.1, our recipe annotations are semantic networks composed of
predicates connected through shared arguments. These networks are more meaningful
as a whole due to common recipe idiosyncrasies such as missing steps, ellipses and
contextual references. Therefore, we do not consider separate annotations for individual
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instructions but provide one gold standard annotation for the entire recipe.
Furthermore, we do not explicitly separate ingredient lists from instructions either.

In practice each ingredient that is mentioned in such a list requires an action, namely
fetching and proportioning an instance of that ingredient. Therefore, both the ingredi-
ent list and the list of instructions lead to annotations representing procedural cooking
actions. More subjective declarative sentences such as “I like it when the dish has
marinated a bit longer!” generally do not have an impact on the semantic network.

A final characteristic of our semantic networks is that they are expected to start
with a special (get-kitchen ?initial-kitchen) primitive that loads in the initial kitchen to
start from. This is included for ensuring correct contextual understanding of what an
instruction entails given a specific starting situation, as explained in section 3.2.1.

Lastly, it should be noted that for convenience sake our annotations are stored in
files as a flat sequence of predicates even though they should still be seen as an implicit
network with connections being made through shared arguments. An example of such a
flat sequence is given in Figure 3.3

( get=k i tchen ? k i t chen )
( f e tch=and=proport ion ? proport ioned=butte r ?ks=with=butte r

? k i t chen ? target=conta iner=1 butte r 230 g )
( bring=to=temperature ?warm=butte r ?ks=with=warm=butte r

?ks=with=butte r ? proport ioned=butte r 18 degrees=c e l s i u s )
( f e tch=and=proport ion ? proport ioned=sugar ?ks=with=sugar

?ks=with=warm=butte r ? target=conta iner=2 white=sugar 120 g )
( t r an s f e r=contents ? output=conta iner=a ? re s t=a ?output=ks=a

?ks=with=sugar ?empty=conta iner=a ?warm=butte r
? quantity=a ? unit=a )

( t r an s f e r=contents ? output=conta iner=b ? re s t=b ?output=ks=b
?output=ks=a ?output=conta iner=a ? proport ioned=sugar
? quantity=b ? unit=b)

( beat ? beaten=mixture ?ks=with=beaten=mixture
? output=ks=b ?output=conta iner=b ?mixing=t o o l )

Figure 3.3: Flat sequence representation of a semantic network in which some warm
butter and white sugar are beaten together. The implicit graph representation for this
recipe extract is given in Figure 3.1.

Annotation Process

Initial annotations of ten recipes were performed by ten computer science students from
Vrije Universiteit Brussel (VUB), including this thesis’ author, under the guidance of
two university professors from VUB who are experts in the domain of NLP. To ensure
high-quality results, group sessions were held in which the correctness of each annotation
was discussed in detail.

However, as will be explained in section 3.4, evaluation will mostly be performed
through cooking simulations. While building and testing this simulator, it became clear
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that modifications to the representation language and thus also to the previously made
annotations were required. This new annotation iteration, which still borrowed a lot
of insights from the previous iteration, was performed by this thesis’ author with the
help of his promotor who also coordinated the previous annotation efforts. Furthermore,
while following the same process twenty new recipes have been annotated by this thesis’
author to extend the dataset.

To verify correctness of the annotation, this final annotator thoroughly tested each
recipe in simulation and executed them in the real world as well. This should lower the
chance that unmentioned implied steps or ellipses were missed during the annotation
process.

3.4 Evaluation

The evaluation component of our new benchmark has been the main focus during design
and development, because our background study seemed to suggest it is one of the main
factors that is missing in existing benchmarks for recipe understanding. Furthermore, as
explained in section 2.2.3, metrics should be chosen in a way that achieved performance
on them would maximally mimic real-world performance. Since our benchmark task is
ultimately meant to improve recipe understanding in the context of procedural execution,
most of our evaluation methods are based on measuring execution success.

Real-world robotic execution for every parsing result would not be feasible, but
approximating such a setting with a kitchen simulator is. Therefore, we developed
a simulator that can execute semantic networks in our representation language when
given an initial kitchen environment. Performance can then be evaluated using special-
purpose metrics that have been inspired by metrics previously used to gauge performance
on compositional directives with non-reversible state changes (Shridhar et al., 2020).

These simulation-based metrics are ‘goal-condition success’, ‘dish approximation
score’ and ‘recipe execution time’. In case benchmark users would prefer to not use
the simulator, we also included the commonly used graph matching algorithm Smatch
that directly compares semantic networks. However, the latter graph-based metric does
come with some downsides compared to the simulation-based metrics as will be discussed
in section 3.4.3.

How to use our simulator and its evaluation tools in practice is explained with ex-
amples in Chapter 4 and our benchmark’s accompanying documentation. In the rest of
this chapter we will focus on general design choices and the reasons for making them.

3.4.1 Simulator

We want a simulator that can be easily used to aid in both model development and
evaluation. For these purposes a simulator should fulfill at least four requirements.
First, it should provide an implementation for each of the primitives in our representation
language. Secondly, it should be able to represent and manipulate the arguments that
are propagated from one primitive operation to another. Thirdly, it should be able
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to find a contextually valid execution order for all primitives in the network since a
semantic network is not necessarily a clear sequential structure. Lastly, it should be
portable enough to support most users. A computational system that supports all these
prerequisites is Incremental Recruitment Language (IRL; Spranger et al., 2012; Van den
Broeck, 2008) which is part of the Babel toolkit for multi-agent experiments on emergent
communication (Loetzsch et al., 2008; Nevens et al., 2019).

To fulfill the first requirement IRL provides an interface which can be used to imple-
ment cognitive operations. These cognitive operations can be seen as multi-directional
predicates that compute a set of output arguments from a set of input arguments, as is
normally done in constraint languages. The primitives in our representation language
can be seen as a case of such cognitive operations.

The second requirement is satisfied through IRL’s support of semantic entities. These
semantic entities can be seen as data which can be bound to the arguments of cognitive
operations. Semantic entities can be used for any type of data, which means we can use
such entities to define kitchen states, modes, quantities and food or tool concepts and
instances.

IRL also fulfills the third requirement as it can execute networks of cognitive oper-
ations by performing a search process in which operations are chosen for execution by
determining what bindings are available at each step. In other words, it can search for
a valid execution order of a procedural network in a contextual data-flow driven way.

The computational system of IRL also meets the last requirement as the system is
written in Common Lisp and supports most major Lisp implementations on at least the
major platforms. More specifically, it has been verified to run for the Lisp implementa-
tions CCL, SBCL and LispWorks on Linux, Mac OS and Windows platforms.

In addition to the IRL system we also chose to use the web interface module of
the Babel toolkit. This web interface provides interactive visualizations of the network
execution process in which model developers could further inspect kitchen entities at
each step of execution. This allows for easier in-depth analysis of results and might lead
to more insight into the performance of their model and possible remaining issues. An
example of a web interface visualization is given in Figure 3.4.

Cooking Primitives & Kitchen Entities

IRL already provides a useful system for implementing and running cooking simulations,
but implementation choices for the cooking primitives and semantic entities will still
significantly impact simulation behavior. Therefore, in this section we will discuss some
of these choices.

A first technical choice is that we implemented all primitives and entities symbolically
using our own cooking ontology to further enhance interpretability of the simulation
process and facilitate analysis of execution details. A kitchen state will envelop all
details of the kitchen such as available ingredients, tools and their locations. A symbolic
representation therefore supports investigating in detail what contextual changes occur
at each execution step in a human-readable way.
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Figure 3.4: Interactive visualization of the simulator’s execution process for a small
recipe extract in which some warm butter and white sugar are beaten together. All
steps and entities can be expanded further for more details. This visualization was
obtained by simulating the semantic network given in Figure 3.3.
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Secondly, a special type of argument was created and used in our primitives to
circumvent a problematic technical characteristic of IRL. The currently available IRL
search process will fail and stop execution of a semantic network as soon as no primitive
operation can be found for successful application at a certain time in processing. In the
case of recipes failure of prior steps, however, do not necessarily lead to failure of future
steps. Not finding flour to add to the dough for example has no effect on the chocolate
dip that should be created later on. Therefore, a special type of argument was created
and used in our primitives that indicates a primitive operation has a ‘failed object’ as
a result while still allowing the primitive operation itself to succeed. This approach
ensures a solution will be found in which as many steps as possible are actually executed
leading to more reliable evaluation results.

Thirdly, kitchen entities and primitive arguments can be typed in IRL. We used this
property to more explicitly model some general world knowledge into our simulator.
Typing entities can be used to encode such general world knowledge by organizing types
in a hierarchical way in an ontology. Such hierarchies make it explicit for example that
both ‘white sugar’ and ‘brown sugar’ are a type of sugar and can therefore be used where
‘sugar’ is needed. To ensure the aforementioned ‘failed object’ can be used everywhere,
this type is put at the absolute bottom of the hierarchy by extending all other types.
Using typed arguments also ensures execution simulation more closely approximates
real-world scenarios in general. We can for example ensure a network operation to flour
a tray with onions will fail immediately by specifying the flouring primitive needs an
argument that actually allows flouring.

Other realistic affordances have been included as well, but not necessarily in a tech-
nical way. Some conditional checks have been included in primitive implementations
that lead to early operational failure if they would do the same in the real-world. Shak-
ing an open jar with liquid for example will fail as the liquid would not remain in the
jar. Nevertheless, we should indicate that the simulator is currently not a full-fledged
physics-based simulator of the real world. Some common affordances have been included
but not all possibilities have been accounted for. The used metrics, however, will still
punish mistakes even if the simulation fails later than needed.

Although many affordances have been included, some simplifying elements have been
added as well. Firstly, similar to the experiments of Bollini et al. (2013) we assume that
the kitchen is mise en place. All ingredients are distributed in bowls and primitives
will generally handle bowls with ingredients or intermediate products in them instead
of directly handling an ingredient itself. This seems to be a reasonable assumption
as robotic detection and manipulation of labeled bowls is more likely in the foresee-
able future considering existing limitations in the field of computer vision and robotics
in general (Mason, 2018). Secondly, to prevent an abundance of fetch and other less
cooking-oriented operations some primitive implementations support default values for
certain arguments. If no mixing tool has been specified when the primitive for beating
some eggs is executed for example, the simulator will automatically fetch a whisk by
default. Explicitly including a fetch operation in the semantic network and using its
ouput for the beating operation, however, will work as well and will not be punished in
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the simulation-based metrics. The documentation provided with the simulator mentions
for each primitive which arguments are mandatory and which are optional.

Finally, temporality of instructions is encoded into our simulator by including a time
of availability for each argument. Each primitive will specify the time of availability of its
output arguments based on the time of availability of its input arguments. This ensures
that we can detect temporal dependency relationships between executed operations and
thus discover which cooking operations could be executed in parallel and which could
not.

3.4.2 Simulation Environments

To be able to evaluate solutions from models, the simulator has built-in simulation
environments for each of the thirty recipes included in the test data. Such a simulation
environment is comprised of four main components, namely an initial kitchen state, a
gold standard semantic network, the final dish that is expected and a recipe execution
time.

The initial kitchen state provides the intial context to start from and gets loaded
in by the get-kitchen operation, which should be present in every semantic network
as explained in section 3.3.3. All test recipes currently start from the same initial
kitchen state, which contains all the ingredients and tools that can be reasonably used
to execute any of the test recipes. A detailed inventory is provided in Appendix C and
the documentation accompanying the benchmark.

The gold standard semantic network is our solution for the recipe from the test set.
This solution tries to obtain the final dish in the most efficient way. This means tools
are reused as much as possible instead of constantly fetching a new tool, which would
lead to more required cleaning and lost time. If a recipe states to ‘cut the tomato and
the cucumber’, for example, the same knife will be used for both ingredients in the
gold standard solution even though using two different knives would lead to the same
outcome. However, recipe steps are also followed as sequentially as possible when order
does not explicitly matter. If a sentence in a recipe step states to add ingredient 1 and
then ingredient 2, the gold standard semantic network will add these ingredients in this
order as well. This could be important to realize when trying to interpret certain metric
results.

The expected final dish is stored because the nonsequential nature of networks can
complicate automatically determining which argument of a semantic network can be con-
sidered the final output. Some recipes might even contain small instructions concerning
cleanup or how to handle surplus ingredients, which means the final instruction does
not necessarily lead to the final dish. Therefore, we explicitly specify which simulation
object is considered the cooked dish.

Recipe execution time is based on the time of availability concept mentioned in
section 3.4.1. We store when the last argument would be available if we follow the
gold standard semantic network and consider this to be the total execution time for
the cooking process in simulation. This is mostly stored to allow comparing the time
efficiency of semantic network solutions for this recipe.
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3.4.3 Metrics

The main reason our benchmark provides a simulator is to allow evaluating performance
using special-purpose simulation-based metrics. Nevertheless, we still included one eval-
uation metric that uses a semantic network matching process for score computation as it
is commonly used in practice. Supporting both familiar and newer special-purpose eval-
uation tools in our benchmark could be useful to increase adoption, even if we consider
the latter to be more informative. This led to four evaluation metrics being included in
our benchmark, namely:

� Smatch score

� Goal-condition success

� Dish approximation score

� Recipe execution time

Of these four evaluation metrics the latter three are simulation-based. We prefer
these simulation-based metrics over Smatch scores and other metrics for comparing se-
mantic graph structures for two main reasons. First, these non-simulation-based metrics
try to determine semantic overlap between semantic networks by computing how much
is shared structurally with every node and edge being considered equally valuable (Cai
& Knight, 2013; Papadopoulos et al., 2022). However, in the real world certain mis-
takes while cooking will have a higher impact on the end result than others. A weighted
evaluation method could perhaps mitigate this issue, but the second reason concerns a
problem that is harder to mitigate without simulation. It is possible that a semantic
network contains more actions or a permuted sequence of actions when compared to
the gold standard while still leading to the same final dish, albeit in a more inefficient
way. A graph matching score therefore does not always give a good indication of actual
performance for recipe understanding in the context of execution. Some prior research
did attempt to take such effects into account, but noted that high computational cost of
graph matching in general already complicates evaluation (Papadopoulos et al., 2022).

The idea behind each of our metrics will be explained in detail in the following
sections, with examples in which the scores are actually computed also being available
in our benchmark’s accompanying documentation.

Smatch Score

The semantic matching tool Smatch is a Python library6 that has been developed by
Cai and Knight (2013) as an efficient evaluation metric for determining the semantic
overlap of two semantic feature structures, such as a predicted semantic network and a
gold standard semantic network.

6https://github.com/snowblink14/smatch
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In order to determine this semantic overlap the Smatch tool first converts semantic
structures to triples representing a conjunction of logical propositions. These triples can
take one of the following three forms:

� (‘instance’, variable, concept) for triples denoting that a variable represents an
instance of a given concept;

� (relation, variable1, variable2) for triples denoting that two variables are connected
to each other by the given relation;

� (attribute, variable, value) for triples denoting that a specific attribute of the given
variable has a certain constant value.

Once the triples are obtained, the Smatch tool then computes the F-score of the
triples in the second network against the triples in the first network as a measurement
for the amount of propositional overlap between the two. This F-score can be computed
using formula (3.1), with M being the number of matching triples, T being the total
number of triples in the first network and G being the total number of triples in the
second network.

F = 2
M
T

M
G

M
T + M

G

(3.1)

However, there are multiple possible values for M since variable names are not nec-
essarily shared between the two semantic networks and different variable mappings are
thus possible. Therefore, Smatch computes the maximum F-score that is possible when
considering all possible variable mappings. Due to the computational complexity, this
maximum F-score is actually approximated through the use of a hill-climbing method,
but experiments of Cai and Knight (2013) have shown that this method is both efficient
and effective.

Although the hill-climbing method and F-score computation from the Smatch Python
library could be used directly for our use case, the library does not support conversion
to triples for our type of semantic networks. This conversion step was therefore imple-
mented ourselves by

1. mapping each encountered primitive and variable to an instance;

2. creating an argument relation between each primitive name and its variable argu-
ments;

3. creating an argument attribute for the primitive name with a fixed value every
time a constant argument is encountered.

For further clarification, a brief example of such a conversion is given in Appendix E.
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Goal-Condition Success

Goal-condition success is a score between 0 and 1 representing the ratio of goal-conditions
that have been achieved to those that were minimally needed to finish the task of cooking
the complete dish. It is probable that a model did not manage to understand the recipe
adequately enough in order to reach a kitchen state in which the final dish is available.
Goal-condition success tries to measure how many steps a cooking bot is removed from
creating this final dish based on his current understanding of the recipe. Therefore,
complete success of the recipe understanding task is only achieved if goal-condition
success is 1.

The goal-conditions that are used in each recipe are based on the primitives that are
present in the gold standard network, excluding get-kitchen as its inclusion is convention
and not really an indication of understanding. Each gold standard semantic network
is annotated in a way that the network is as minimal and efficient as possible without
excluding any important execution information. Therefore, the output variables of each
primitive in the gold standard can be seen as a set of minimum goal-conditions that
should be reached during the cooking process. The output kitchen state, however, is ex-
cluded as a goal-condition. This is needed because ‘cut the tomato and the cucumber’ for
example can lead to a kitchen state with one or two dirty knives, but both states should
be considered equal with regards to reaching the goal-condition of having a cut tomato
and cucumber on the countertop. Furthermore, the order in which goal-conditions are
reached does not matter either. Multiple paths could be taken to reach the final dish
and even different combinations of primitives might be possible to reach it. On each
of these paths, however, the aforementioned gold standard ouputs are expected to be
encountered at some point.

In practice, goal-condition success is computed by

1. collecting all outputs from the gold standard network and the predicted network;

2. checking whether each gold standard output is present in the predicted outputs,
with each predicted output only being allowed to match once in case the same
goal-condition should be encountered multiple times;

3. storing all reached and unreached goal-conditions to further facilitate model anal-
ysis;

4. computing the ratio of reached goal-conditions to total goal-conditions and obtain-
ing a score between 0 and 1.

Dish Approximation Score

The dish approximation score is a score between 0 and 1 and represents an alternative
estimation of how far a model was from reaching the final dish. Achieving complete
task success or a goal-condition success of 1 seems improbable for most models, but
only determining how many goal-conditions were left to be reached does not necessarily
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indicate how closely their dish resembles the gold standard final dish. Therefore, we also
need a score that approximates how similar two dishes are.

Just like a human would still have some subjective influences when comparing the
taste of two dishes, we are aware this score is also based on some subjective choices by
us of what is important. However, we tried to base our computation on criteria that
seemed sensible as much as possible.

Our dish approximation score is based on a custom point awarding system in which
symbolic properties of a predicted dish and the gold standard dish are compared and
points are awarded when these properties match. Since it is uncertain which dish is
the final dish in a predicted semantic network, scores are computed for each predicted
output food product and the maximum obtained score is returned as the final dish
approximation score for the network. To be able to distinguish importance certain types
of properties have a higher number of points that can be earned than others. Moreover,
the dish approximation score is computed as a weighted sum of ratios of earned points
to the maximum obtainable points. We will elaborate on the exact computation process
in the following paragraphs.

A final dish in our simulator consists not only of the actual food product, but also
of the way it is served in a certain container. This container could for example be a
specific type of baking tray greased with butter, be placed on a wire rack in the kitchen
or contain a specific number of portions of the made food product. All these kind of
more presentation-oriented properties are awarded one point each if they match. Since
they should have a less significant impact on the actual taste, we compute the ratio for
these points separately and give them a factor of only 2% in the final weighted sum. The
most important aspect in achieving a similar taste is the presence of correct ingredients
in the predicted dish. Therefore, we bias our score towards correctness of ingredients by
assigning it a factor of 98% in the final weighted sum.

Due to the fact that the initial ingredients might have been combined in multiple
ways before being used in a final step to create the dish, we have to backtrack in the
simulated cooking process to determine which ingredients and how much of them is
actually present in a dish. We call this operation ‘dish unfolding’. This dish unfolding is
a recursive operation in which we start from a dish and check what direct components it
is comprised of and in which quantities. This process is repeated until we reach the base
ingredients. This way we can determine how much of each base ingredient is present in
a dish, while also knowing the sequence of intermediate food products they have been
combined into. We start the comparison from the base ingredients instead of the final
food products, because it is possible that a bowl contains all loose base ingredients and
just one mixing operation is missing. This is still very close to the final dish which would
be missed if we would just compare the final food products directly one at a time.

Once we have unfolded a predicted and a gold standard dish into their base ingredi-
ents, we look for the predicted base ingredient that maximally matches a gold standard
base ingredient. This maximal matching is determined by a weighted sum of awarded
points as well. Each property an ingredient has in common, e.g., being baked or having
the right temperature, awards one point. The amount of each ingredient that should
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be present is also seen as a property. This choice was made because the level of detail
in our simulator currently does not suffice to reliably estimate how impactful having
more or less of an ingredient would be. Therefore, we consider quantity mistakes to be
general property mistakes as well. The points ratio for these ingredient properties are
then computed and get a weight of 60%. In addition to these ingredient properties, we
also check the sequence of intermediate food products they are used in and how many
properties these intermediate food products have in common. The similarity of their
intermediate food products gets a weight of 40%, which is relatively high but was chosen
as certain combination operations do seem to have a big impact on the taste of their base
ingredients. Since it is not guaranteed that a gold standard base ingredient is actually
present in the predicted base ingredients, we compute this similarity score for each pair
of ingredients and greedily choose the one with the highest score.

Each of these base ingredients will have an equally weighted influence on the 98% of
the total dish score that is based on ingredient correctness. Gold standard ingredients
that are missing or predicted ingredients that are in excess will each be considered to be
an ingredient for which a similarity score of zero was achieved.

The aforementioned comparison process could be improved given an even more de-
tailed, physics-based simulator. However, this dish approximation score does already
seem to provide a useful additional metric for gaining insight into model results. A
clarifying practical example is given in the following paragraphs and a pseudo-algorithm
for computing the approximation dish score can be found in Appendix D.

Computation Example of Dish Approximation Score

In the following paragraphs we will manually compute the dish approximation score
on a simplified dish in order to further clarify the ideas explained earlier. A graphical
representation of the two dishes that will be compared is given in Figure 3.5.

The first 2% of the dish approximation score depends on properties of the dish that
are not directly related to its actual contents. This includes location and container
properties. As can be seen in Figure 3.5, most container properties are the same. Both
containers are used, lined with baking paper, filled up from side to side and are located
on the kitchen’s countertop. However, the container itself is from a different type since
the gold standard expects a baking tray and the predicted dish is served on a cookie
sheet. Additionally, the number of portions that have been made differ as well, with the
gold standard and predicted dish respectively having 25 and 20 portions. This leads to
the following score computation, with four out of six possible points being awarded:

scorecontainer =
1 + 1 + 1 + 1 + 0 + 0

1 + 1 + 1 + 1 + 1 + 1
= 0.67 (3.2)

Next, the actual contents of the dish will be compared. This comparison will be
preceded by a ‘dish unfolding’ process, which is demonstrated in Figure 3.6 for the gold
standard dish. Each portion is first unfolded into base ingredients, after which we merge
together base ingredients that overlap completely except for their available quantities.
This simplifies the further comparison process and lowers the impact of proportioning
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baking-tray

used: true
lined-with: baking-paper 
arrangement: side-to-side

temperature: 175 °C
current-shape: crescent-shape
baked: true
mixing-type: mixed
amount: 25 g

sifted: false
amount: 10 g

all-purpose-flour

vanilla-extract
amount: 1 g 

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 14 g

temperature: 18 °C
amount: 4 g 

white-sugar

temperature: 18 °C
amount: 10 g 

butter

Gold Standard Dish Predicted Dish

25 portions

cookie-sheet

used: true
lined-with: baking-paper 
arrangement: side-to-side

homogeneous-mixture-2

temperature: 175 °C
current-shape: ball-shape
baked: true
mixing-type: beaten
amount: 36.25 g

sifted: false
amount: 12.5 g

all-purpose-flour

20 portions

amount: 5 g 
cocoa-powder

located at counter-top located at counter-top

vanilla-extract
amount: 1.25 g 

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 17 g

temperature: 18 °C
amount: 5 g 

white-sugar

temperature: 5 °C
amount: 12.5 g 

butter

homogeneous-mixture-2

Figure 3.5: Graphical representation of a gold standard dish and a predicted dish. Dif-
ferences between them that will influence the dish approximation score have been high-
lighted in red. Although the amounts often differ, this will have no direct influence as
this difference is actually caused by a difference in number of portions.
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errors, since the amounts of every single portion could be incorrect solely because the
wrong number of portions have been made. However, the amounts of each base ingredient
after merging still have to coincide for the gold standard dish and predicted dish in order
to not be punished further as a mistake.

It is also important to note here that complete overlap is needed in order to be
mergeable. If two base ingredients have some properties that differ or belong to different
mixture hierarchies, they are considered to be two different ingredients even if they
have the same ingredient type. Because such a case is less common, this has not been
included in this example for simplicity sake. However, all concepts generally remain the
same except in that case we will later rely on a greedy search on achieved ingredient
comparison scores to find the two base ingredients that are most similar since we cannot
rely solely on ingredient type.

In the example of Figure 3.5, each ingredient type only occurs once and the amounts
of each base ingredient is the same for both dishes after merging the portions. As can be
seen in Figure 3.6 the gold standard dish has four base ingredients, while the predicted
dish will have one more due to the addition of cocoa powder. Since mixture hierarchies
are recurring for these base ingredients, we will first compute a score for them. The all-
purpose-flour and vanilla-extract are only part of homogeneous-mixture-2. Therefore,
only the overlap between homogeneous-mixture-2 of both dishes have to be taken into
account. The temperature and state of being baked are the same, but the shape and
mixing type differ. Moreover, both are the same type of mixture. This leads to the
following score computation:

scoremixture−2 =
1 + 1 + 0 + 0 + 1

1 + 1 + 1 + 1 + 1
= 0.60

The base ingredients white-sugar and butter are part of a sequence composed of
homogeneous-mixture-1 and homogeneous-mixture-2. There is complete overlap in prop-
erties for homogeneous-mixture-1 and each mixture has equal weight in the computation
of sequence correctness. This leads to the following score computation:

scoremixture−1,2 =
1 + scoremixture−2

2
= 0.8

For the base ingredients all-purpose-flour and vanilla-extract there is complete over-
lap in properties between the two dishes and the mixture sequence score will be based
on scoremixture−2. Giving a weight of 60% and 40% to the property overlap and mixture
sequence score respectively, we get the following score computation:

scoreflour = scorevanilla = 0.60× 1 + 0.40× scoremixture−2 = 0.84

For the base ingredient white-sugar there is complete overlap in properties between
the two dishes as well, but the mixture sequence score will be based on scoremixture−1,2.
Giving a weight of 60% and 40% to the property overlap and mixture sequence score
respectively, we get the following score computation:

scoresugar = 0.60× 1 + 0.40× scoremixture−1−2 = 0.92
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homogeneous-mixture-2
temperature: 175 °C
current-shape: crescent-shape
baked: true
mixing-type: mixed

homogeneous-mixture-1
temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed

amount: 25 g 
vanilla-extract

temperature: 18 °C
amount: 100 g 

white-sugar
sifted: false
amount: 250 g

all-purpose-flour butter
temperature: 18 °C
amount: 250 g 

homogeneous-mixture-2

temperature: 175 °C
current-shape: crescent-shape
baked: true
mixing-type: mixed
amount: 25 g

sifted: false
amount: 10 g

all-purpose-flour

vanilla-extract
amount: 1 g 

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 14 g

temperature: 18 °C
amount: 4 g 

white-sugar

temperature: 18 °C
amount: 10 g 

butter

25 portions

UNFOLD

Figure 3.6: Graphical representation of the dish unfolding process in which 25 portions
of a homogeneous mixture get unfolded into base ingredients.
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For the base ingredient butter there is no complete overlap in properties between the
two dishes, since their temperature differs. The amount, however, will be correct when
taking the mistake in portions into account. The mixture sequence score will be based
on scoremixture−1,2 and weights of 60% and 40% will be used as before, leading to the
following score computation:

scorebutter = 0.60× 0 + 1

1 + 1
+ 0.40× scoremixture−1−2 = 0.62

All base ingredients have an equal weight in the dish approximation score component
based on contents, which leads to the following score computation:

scorecontents =
scoreflour + scorevanilla + scoresugar + scorebutter + 0

5
= 0.64

The zero score addition follows from the presence of the base ingredient cocoa-powder
in the predicted dish, since that ingredient is not present in the gold standard dish.
Absent or excess ingredients will lead to the addition of zero scores which can have a
significant influence on the final dish approximation score, as they can be expected to
have a significant influence on real-world taste as well. The same approach is also taken
for missing or excess steps in mixture sequences, with additional zero values being added
there too. However, this is not the case for our example here.

The final dish approximation score can then be computed by performing a weighted
sum of the scores obtained for the dishes’ contents and container comparisons, with each
respectively counting for 98% and 2% of the final score. This leads to the following final
score computation:

dish approximation score = 0.02× scorecontainer + 0.98× scorecontents = 0.65

It should be noted that the explained computation was performed on a simplified
version of the dishes. Both containers and base ingredients will generally have more
properties that can be compared in our simulator, which causes some small mistakes to
have less of an impact on the final score.

Recipe Execution Time

Recipe execution time, which is based on the time of availability as explained in sec-
tion 3.4.2, checks how many simulation time steps it would take before the last argument
would be available if we follow the predicted semantic network. We consider this to be
the total execution time for the simulated cooking process. This metric is included
because neither of the other two simulation-based metrics take cooking efficiency into
account, while this could also be an indication of insight into what is needed for a recipe.

Other efficiency metrics could have been included as well, such as minimizing the
number of dirty tools, but execution time seems to be the most all-encompassing one.
Reusing tools when possible will also lead to a lower execution time for example compared
to fetching and using different tools. Nevertheless, other efficiency metrics might be
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included in future versions of the benchmark if such efficiency optimizations would be
deemed useful.

Although recipe execution time can already be used to compare different solutions
without knowing the gold standard execution time, an overview of the recipe execution
times of all gold standard solutions have been included as a baseline in the benchmark’s
documentation for completeness sake. However, it should be noted that a lower execution
time than the presented baseline does not automatically mean better performance as
it could be caused by inadequate comprehension of the recipe and performing less or
incorrect operations. Recipe execution time should thus always be interpreted in the
context of other evaluation results.

3.5 Analysis of Benchmark Properties

Each benchmark will have to make trade-offs due to technical constraints or conflicting
requirements. This means even a well-designed benchmark will have benefits and down-
sides associated with its use. Our benchmark is no exception to this rule, which is why
in the next sections we will analyze its properties based on the important benchmark
characteristics that were mentioned in section 2.2.3. Such an analysis and general trans-
parency not only helps potential benchmark users to make the right choice for their use
case, but also allows us to determine where potential improvements might be possible
in the future.

3.5.1 Relevance

Maximizing relevance is one of the most important benchmark properties and is there-
fore one we focused on extensively. Our benchmark is aimed towards progressing a
narrower context-specific task, namely recipe parsing for use in robotic cooking. Efforts
to enhance transferability of benchmark performance to the real world are reflected in
many made design choices. First, the representation language used in our benchmark
is a domain-specific procedural language that can be directly used in robotic agents
by providing an implementation for the primitives. Secondly, recipes have been chosen
that contain many idiosyncrasies encountered in recipe texts which allows diagnosing
models’ strengths and weaknesses on common issues. Moreover, the quality of their an-
notations has been safeguarded by forgoing annotation via non-expert crowdsourcing in
favor of annotation by computer science students with procedural knowledge. Addition-
ally, these annotations have been validated through discussions guided by NLP experts
and simulated execution testing. Thirdly, test set collection is separated from training
set collection which could enhance generalization and does not overpromote the use of
one particular type of model. Lastly, we provided metrics that are based on a cooking
simulator to align benchmark performance measurements with real-world performance
as much as possible.

Even though it is clear that increasing relevance has been a primary focus, there are
also some benchmark downsides that should be addressed. First, ensuring annotations
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were of an adequate quality and would be executable in simulation limited the number of
recipes that are currently in our test set. Therefore, the current setup of our benchmark
can be used to provide insight into problems and thus further progress the field but it
should not be seen as a reliable indication of the status of the field overall. Secondly,
the level of detail used in the simulator will affect the transferability of our performance
measurements to the real world. Even though an abstraction level was chosen that al-
ready allows adequate measurements, using a more advanced simulator could lead to
even more realistic measurements. Thirdly, our benchmark is built around Western
recipes in English and is therefore biased towards them. This was needed as annota-
tors and validators had to understand them, but results should thus not be considered
representative for non-Western recipes or recipes written in other natural languages.

3.5.2 Reproducibility

Since semantic networks generally do not have an explicit execution order, IRL’s search
process could have some built-in stochasticity if multiple primitives would be eligible for
execution at the same time. However, due to the fact that our primitives currently all
have a unidirectional implementation and kitchen states are propagated throughout the
network, execution order will in effect be deterministic. Moreover, our simulation-based
metrics do not take execution order into account. Therefore, evaluation scores between
different runs of the same model are consistent and reproducible.

Furthermore, our benchmark is mainly focused on research progression by providing
an adequate and relevant evaluation environment. It does not have a leaderboard to
prevent turning the benchmark into an effort to win a contest instead of maximally sur-
veying the research domain in order to be as impactful as possible. Therefore, evaluation
results can be expected to be published in research papers that describe the model in
detail which also facilitates independent reproduction.

3.5.3 Fairness

Many design decisions have been made to augment fairness for all benchmark partici-
pants. No limitations have been put on the type of model that can be used, nor did we
provide training data that would promote the use of any specific approaches. Further-
more, the proposed tools and methods are portable and thoroughly described in both
this thesis and the benchmark’s accompanying documentation.

Test data has been made publicly available to participants which potentially allows
overfitting and perhaps abuse of prior knowledge. This choice, however, is made as a
consequence of two other design decisions. First, we did not want to include a leader-
board to lessen the competitive urge that might lead to intentional or unintentional
benchmark overfitting. Secondly, we wanted to make our simulator open source to al-
low independent future extensions. However, this means users would have access to the
built-in solutions if they know where to look for them. Therefore, the fairer option was
decided to be openly giving them to all participants. This access to the solutions is not
necessarily a problem, since our benchmark focuses on being a testbed through which
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different approaches can show their benefits and downsides to fully explore the research
domain. Ideas behind developed approaches are considered more valuable than actually
obtaining the highest possible evaluation scores.

3.5.4 Verifiability

Due to our benchmark setup, results will mostly be published in research papers detailing
the general approach and model insights. Verifiability is thus satisfied from an academic
perspective. From an evaluation perspective, benchmark results are obtained from data
in an automated deterministic manner which means they can be considered completely
accurate in that way as well.

3.5.5 Usability

The benchmark has portable, publicly available software tools that support the devel-
opment and evaluation of models. These tools are easy to use and are well-documented
in this thesis and the benchmark’s accompanying documentation. The documentation
addresses both result interpretation and technical use of the tools. Furthermore, all
simulation and evaluation tools are open source allowing benchmark designers and users
to extend them if needed.

The lightweightedness of the tools and the small dataset size should not lead to any
high expenses for model evaluation, but the absence of training data might require bigger
resource investments being needed for training data curation. This trade-off, however,
was needed to improve other benchmark properties such as relevance and fairness by
potentially enhancing generalization and avoiding overpromotion of specific model types.
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Chapter 4

Tackling the Benchmark

This chapter describes the general approach to using our new benchmark for recipe
understanding that has been presented in Chapter 3. Successful benchmark usage does
not only imply being able to set it up and use it from a technical perspective, but also
implies having insight into some of the linguistic and extralinguistic challenges present
in the recipes provided with our benchmark. Therefore, both of these aspects will be
addressed in this chapter.

We will first focus on giving more details regarding benchmark setup and usage from a
technical standpoint in section 4.1, as such knowledge is important for ensuring adoption.
Next, section 4.2 will briefly go over some practical considerations that should be taken
into account when interpreting metric results. Furthermore, in this section we will
also use examples to accentuate the advantage of combining multiple metrics. Finally,
section 4.3 will delve deeper into some more complicated challenges that models will need
to take into account in order to be successful. These challenges will be demonstrated
using examples from the recipes in our benchmark. However, we will only bring to light
the potential challenges without explicitly giving a solution for them to avoid promoting
certain techniques or methodologies for tackling them.

4.1 Setup & Usage of Evaluation Tools

In this section we will describe how to set up an environment for running the benchmark
simulator enabling our full evaluation system. As explained in section 3.4.3 simulation-
based metrics are recommended as they can be very beneficial for measuring perfor-
mance, but it is still possible to compute Smatch scores by only using our modified
Python Smatch library. We will briefly explain how the latter can be done in sec-
tion 4.1.1, after which we will delve deeper into the setup and usage of our simulator for
model evaluation in sections 4.1.2 and 4.1.3.
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4.1.1 Python Library Smatch

Our modified Python library for computing Smatch scores has been made available as
a standalone tool1. It only requires a Python version 3.5 or higher and can be used
without any additional setup. The same tool is integrated into our simulator, but the
library can also be used independently with the provided gold standard solution files
and with gold standard solutions that have been made by users themselves.

Although its primary use is for computing the Smatch score, which is a special kind
of F-score as explained in section 3.4.3, the library also supports computing precision
and recall scores as they are both components used in the F-score computation. The
meaning networks of the prediction and the gold standard solution, for which the score
should be computed, can be passed in string format. Alternatively, paths to files that
each contain one of the two aforementioned meaning networks are supported as well.
This alternative is generally recommended for larger networks, which will be the case
for many of the recipes in our benchmark.

The following console commands will compute the Smatch score for a predicted
meaning network of (pred-1 ?x) and an expected meaning network of (pred-1 ?x)

(pred-2 ?x) with the networks respectively being passed as string or file arguments:

python smatch.py -m "(pred-1 ?x)" "(pred-1 ?x) (pred-2 ?x)"

python smatch.py -m "path_1/file_1.txt" "path_2/file_2.txt"

Adding the argument –pr to these commands will additionally include the precision and
recall in the output. The order in which the predicted and expected meaning network are
passed does not matter when computing the Smatch score as the F-score is symmetric,
but argument order does matter for precision and recall scores.

4.1.2 Simulator Executable

The benchmark simulator, with its built-in evaluation tools, is made available in the form
of a standalone executable that allows one-click runs without needing prior installation.
This executable can either be called via command-line with the appropriate arguments
or it can be run directly in which case a graphical interface is shown requesting the user
to specify the arguments. The former is expected to be used the most for actual training
and development of models, while the latter has been added to enhance user-friendliness.
Having a graphical user interface allows users to easily test out the system manually or
to quickly select a particular solution for further analysis.

Command-line Runs

Command-line runs with the executable have two mandatory arguments that specify an
input and output file path, namely -input and -output respectively. Additionally, there
are multiple optional arguments to further fine-tune the evaluation system. An overview

1https://github.com/RobinDHVUB/smatch
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of all options is given in Table 4.1. An execution call that includes all these possible
options for an evaluation run on Windows would look as follows:

cookingbot-evaluator.exe -input "input_file_path/predictions.solution"

-output "output_file_path/results.csv"

-show-output true

-metrics smatch-score

goal-condition-success

dish-approximation-score

execution-time

-lib-dir "smatch_dir_path"

Argument Description

-input Path to a .solution file with predicted semantic networks
-output Path to a .csv file to write evaluation results to
-show-output If true or t the simulation process is visualized in the browser
-metrics Evaluation metrics to use: smatch-score, goal-condition-success,

dish-approximation-score, execution-time or none
-lib-dir Path to the Smatch library directory (required for smatch-score)

Table 4.1: An overview of all command-line arguments that are available for a cookingbot-
evaluator call.

The input file path specified by -input should be a path to a .solution file containing one
or more semantic network predictions that should be evaluated. Each semantic network
should be prefixed by its recipe ID, which has been provided via the ID field in the
structured recipe text as explained in section 3.3.2. Redundant whitespace or single-line
comments via ; present in the solution file are ignored during the parsing process. Many
example solution files are provided in the benchmark’s accompanying documentation
and a simple example is also shown in Figure 4.1.

After parsing the semantic networks, they are first checked for syntactic correctness.
Next, they are executed in the simulator and the requested metrics are computed by
comparing each prediction to the gold standard. Finally, the evaluation results are
written to a CSV file specified by the output file path given via -output. An example
extract of such a CSV file is shown in Figure 4.2.

Additionally, an optional argument -show-output can be provided and is expected to
be a boolean specifying whether Babel’s interactive web visualization should be used to
visualize the predicted network’s execution for further analysis. If this argument is true,
a web browser will be automatically opened at http://localhost:8000 to elucidate the
simulation process of which a visualization was shown earlier in Figure 3.4. For efficiency
reasons, the predicted network’s execution is not visualized by default as visualization
comes with overhead costs.

Lastly, a list of evaluation metrics can be given via the optional argument -metrics.
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#almond=c re s cent=cook i e s
( get=k i tchen ? k i t chen )
( f e tch=and=proport ion ? proport ioned=butte r ?ks=with=butte r

? k i t chen ? target=conta iner=1 butte r 230 g )

; IMPLICIT : l e t the butte r warm up
( bring=to=temperature ?warm=butte r ?ks=with=warm=butte r

?ks=with=butte r ? proport ioned=butte r 18 degrees=c e l s i u s )

( f e tch=and=proport ion ? proport ioned=sugar ?ks=with=sugar
?ks=with=warm=butte r ? target=conta iner=2 white=sugar 120 g )

( t r an s f e r=contents ? output=conta iner=a ? re s t=a ?output=ks=a
?ks=with=sugar ?empty=conta iner=a ?warm=butte r
? quantity=a ? unit=a )

( t r an s f e r=contents ? output=conta iner=b ? re s t=b ?output=ks=b
?output=ks=a ?output=conta iner=a ? proport ioned=sugar
? quantity=b ? unit=b)

( beat ? beaten=mixture ?ks=with=beaten=mixture
? output=ks=b ?output=conta iner=b ?mixing=t o o l )

( bake ?baked=c r e s c e n t s ?ks=with=baked=c r e s c e n t s
?ks=with=beaten=mixture ? beaten=mixture ?oven
15 minute 175 degrees=c e l s i u s )

#easy=banana=bread
( get=k i tchen ? k i t chen )
( f e tch=and=proport ion ? proport ioned=eggs ?ks=with=eggs

? k i t chen ? target=conta iner=1 egg 2 p i e c e )
( f e tch=and=proport ion ? proport ioned=bananas ?ks=with=bananas

?ks=with=eggs ? target=conta iner=2 banana 3 p i e c e )
(mash ?mashed=bananas ?ks=with=mashed=bananas

?ks=with=bananas ? proport ioned=bananas ? f o rk )
( t r an s f e r=contents ? output=conta iner=a ? re s t=a ?output=ks=a

?ks=with=mashed=bananas ?empty=conta iner=a ? proport ioned=eggs
? quantity=a ? unit=a )

( t r an s f e r=contents ? output=conta iner=b ? re s t=b ?output=ks=b
?output=ks=a ?empty=conta iner=b ?mashed=bananas
? quantity=b ? unit=b)

( beat ? bat t e r ?ks=with=bat t e r
? output=ks=b ?output=conta iner=b ? beat ing=t o o l )

( bake ?baked=banana=bread ?ks=with=baked=banana=bread
?ks=with=bat t e r ? ba t t e r ?oven
60 minute 165 degrees=c e l s i u s )

Figure 4.1: An example solution file containing a predicted solution for the ‘Almond
Crescent Cookies’ and the ‘Easy Banana Bread’ recipes. It should be noted that these
are not the gold standard solutions, but rather random incorrect solutions demonstrating
the general structure of a solution file.
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r e c ipe=id , smatch=score , dish=approximation=score , execut ion=time
easy=banana=bread , 0 . 5 1 , 0 . 1 4 , 3 820
almond=c re s cent=cook ie s , 0 . 4 3 , 0 . 2 4 , 1 830

Figure 4.2: A CSV file containing the evaluation results of a cookingbot-evaluator call
with smatch-score, dish-approximation-score and execution-time as requested metrics.
The results shown here are the evaluation results for the solution file from Figure 4.1.

If no metrics are specified, the system defaults to evaluation using the three simulation-
based metrics. Possible arguments for -metrics are:

� smatch-score: compute the Smatch score

� goal-condition-success: compute the goal-condition success score

� dish-approximation-score: compute the dish approximation score

� execution-time: keep track of the recipe execution time

� none: do not compute any metrics, which can be useful if only the recipe’s simu-
lated execution visualization would be desired for example

In case smatch-score is specified as a metric that should be used, then the optional
argument -lib-dir becomes required. This argument specifies where the Python Smatch
library from section 4.1.1 is located. This library is also bundled together with the
benchmark’s simulator for convenience sake.

Graphical User Interface

If the executable is run directly, a graphical user interface is shown that requests the
same information as would otherwise be given via command-line. It allows users to
easily get acquainted with the different options by performing some quick experiments
with the simulator and the evaluation metrics without having to write custom scripts for
model development. As shown in figure 4.3 starting evaluation is disabled until at least
the mandatory arguments, i.e., the input and output paths, are provided. Specifying
the directory to the Smatch library is disabled as well until Smatch score evaluation is
requested.

4.1.3 Babel Toolkit

In addition to the standalone executable, the benchmark has been made available as part
of the Babel toolkit (Loetzsch et al., 2008; Nevens et al., 2019). This is an open source
toolkit containing modules for implementing and running language- and communication-
related experiments in simulated environments or real-world environments with physical
robots. In contrast to the executable, Babel toolkit installation and setup is not a one-
click process but it has the advantage of providing other language-related development
tools as well as benchmark extensibility.
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Figure 4.3: Graphical user interface that is shown when starting up the cookingbot-
evaluator executable directly. The ‘Start Evaluation’ button is disabled until input and
output paths are specified. Smatch library selection is disabled unless ‘Smatch Score’ is
checked.
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Installation

Installing the Babel toolkit has been thoroughly explained in its online documentation2

for Linux, Mac OS and Windows.
Some steps mentioned in the installation guidelines are not strictly necessary, e.g.,

installing some semantic network plotting dependencies, but could be useful to further
combine available functionalities in Babel with our benchmark for deeper analysis of
the semantic networks. However, the minimal installation requirements for using our
benchmark are fulfilled by performing the following three steps.

1. Clone or download Babel from https://gitlab.ai.vub.ac.be/ehai/babel;

2. Set up a Common Lisp programming environment (with CCL3, SBCL4 or Lisp-
Works5);

3. Load the Babel initialization file init-babel.lisp, which is available in the main
directory of the Babel directory obtained from the first step.

Usage

Once the installation steps mentioned in 4.1.3 are fulfilled, actually using the benchmark
evaluation system consists of the following two main steps.

1. Load the muhai-cookingbot package from Babel using quicklisp:

(ql:quickload :muhai-cookingbot)

2. Call the muhai-cookingbot’s internal-evaluate function, which is also the function
called internally in the benchmark executable of section 4.1.2.

The internal-evaluate function has the same mandatory and optional arguments as the
executable. This means the arguments consist of a required input and output file path
specification in combination with zero or more visualization and metric arguments. An
internal-evaluate call that includes all possible options would look as follows:

(internal-evaluate "input_file_path/predictions.solution"

"output_file_path/results.csv"

:show-output t

:metrics '(smatch-score

goal-condition-success

dish-approximation-score

execution-time)

:lib-dir "lib_dir_path")

2https://emergent-languages.org/wiki
3https://ccl.clozure.com
4https://www.sbcl.org
5http://www.lispworks.com/

64

https://gitlab.ai.vub.ac.be/ehai/babel
https://emergent-languages.org/wiki
https://ccl.clozure.com
https://www.sbcl.org
http://www.lispworks.com/


Extensions

The main advantage of using the Babel toolkit instead of the executable is the possibility
of extending the evaluation tools. Just like other Babel modules the simulator’s modules
are open source components, which can be found in the applications package muhai-
cookingbot. This not only allows the addition of new metrics, but more importantly
allows the creation of new initial kitchen states.

Although the initial kitchen state that is currently provided can already cover many
recipes, it is possible that certain recipes need specific tools or ingredients that are
currently not available in the simulator’s kitchen. In most cases adding such tools or
ingredients can happen in a straightforward manner by simply adding a new item class
to the simulator’s ontology. Nevertheless, we did not automate such an extension pro-
cess since complex relations and hierarchies can exist between items, as explained in
section 3.4.1. Therefore, adding new items should happen in a well-though-out and
detailed manner. Furthermore, letting system extensions occur via Babel has the ad-
ditional benefit that even the MUHAI Cooking Language could be extended with new
primitive cooking operations if needed.

4.2 Interpretation of Metrics

This section will briefly go over some practical considerations related to the evaluation
metrics, while accentuating the advantage of combining multiple metrics. Ideally, at
least all simulation-based metrics are used as they focus on performance from different
perspectives. Therefore, intelligently combining results of all three of them will give a
more correct view of performance. More elaborate examples regarding the interpretation
of metrics can be found in Appendix F and in the benchmark’s documentation, but the
following paragraphs will already explain some of the most important details to be aware
of when interpreting evaluation results.

Predicate Order The order in which the predicates are mentioned in the solution
file actually have no influence on the Smatch score nor on any of the simulation-based
metrics. Only the implicit graph that is created through argument sharing matters for
the metrics. Smatch score is a graph-comparative metric by nature and the simulation-
based results also depend on the implicit graph as this graph is what actually determines
execution order of the recipe steps.

Even the actual execution order of predicates might not always influence all evalua-
tion results. If the execution order is changed, the implicit graph is changed which means
the Smatch score will always be lower. However, it is possible that all goal-conditions are
still reached and that the same dish is prepared with the same execution time ensuring
all other metrics are the same. Additionally, it is also possible some simulation-based
scores remain the same while others do not. Recipe execution time might become longer
if steps are executed in a way that forces the agent to spend more time waiting. This can
for example happen if a food product is put in an oven at a later time than in the gold
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standard, while other steps are dependent on this food product and can therefore not
be executed. Another example could be that goal-condition success might differ because
the order in which ingredients are added to a bowl has changed, while this does not affect
the dish approximation score nor the recipe execution time. The reason goal-condition
success might be different is that a goal-condition of having a bowl containing only the
first ingredient might never be reached if you add another ingredient to that bowl before
adding the first ingredient.

Timing of Mistakes The moment during execution at which mistakes occur can
have an important impact on the obtained results. Smatch score will generally be less
influenced by the timing of a mistake, since the position of the mistake in the implicit
graph does not really affect this score. Comparably, the dish approximation score will
generally also be less influenced by the timing of a mistake since only the effect of the
mistake on the final dish matters in this case, which is often not timing-related. The
timing of a mistake could lead to less or more delay for other steps in which case recipe
execution time is affected, but this effect also depends heavily on the type of mistake
that was made.

However, goal-condition success is very sensitive to the timing of mistakes in general.
If even a small mistake happens early on in the cooking process, it could lead to a lot
of subsequent goal-conditions failing. This is because goal-conditions are checked very
strictly. They are either fulfilled or not. If an ingredient is altered slightly in one of
the first steps before being added to a mixture, for example, this will lead to all future
goal-conditions involving that mixture to fail since the mixture will never be completely
correct when it comes to those goal-conditions. On the other hand, any alterations to
the final dish for example will not influence goal-condition success as all goal-conditions
have already been reached at that point. In that case the dish approximation score,
however, will definitely be impacted.

Type of Mistakes The estimated impact of the type of a mistake is mostly only
derivable through the dish approximation score. The dish approximation score will for
example be much lower when using a completely incorrect ingredient compared to a
smaller mistake such as forgetting to warm up butter before adding it to a mixture.
Goal-condition success, however, will be similar in both cases since all goal-conditions
involving that ingredient will fail in exactly the same way. Similarly, Smatch scores only
detect a mistake is made but do not take into account what type of mistake occurred.
As mentioned in the previous paragraph, both the timing and type of a mistake will
have a combined effect on recipe execution time depending on the delays it causes.

Efficiency Neither goal-condition success nor dish approximation score will take effi-
ciency into account. Constantly fetching new tools instead of reusing them for example
will not prevent reaching all required goal-conditions, nor will it change the composition
of a dish. However, the time needed for executing all steps will have changed, as will the
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implicit graph. This means both the recipe execution time and the Smatch score will be
affected.

In general, efficiency will only be measured through recipe execution time and po-
tentially the Smatch score. However, it should also be noted that recipe execution time
has little meaning without also taking other simulation-based scores into account. Not
performing any cooking steps will lead to a very low execution time, but also very low
scores for goal-condition success and dish approximation.

4.3 Challenges Inherent to Recipe Texts

As mentioned in sections 2.1.1 and 2.1.2, recipes have some linguistic, ontological and
practical characteristics that can facilitate but also complicate processing and under-
standing them. Facilitation is mostly a consequence of the abundance of raw recipe data
and the more imperative, objective and goal-oriented nature of their sentences with less
subjective viewpoint dependencies. Complication is mostly a consequence of diverse lin-
guistic phenomena related to referring expressions and the need for adequate contextual
and world knowledge to allow reasonable understanding.

In this section we will focus a bit more on some of the challenges related to recipe
understanding, using concrete examples from recipes of our benchmark. These practical
examples aid in gaining better insight into the problems, which allows benchmark users
to create better models. The given examples are not intended to be exhaustive, but
should provide initial insights into the type of issues that might present themselves.
Similar and slightly divergent examples of challenges, with varying degrees of difficulty,
can be found throughout our benchmark’s recipes. It should also be noted that we
will abstain from giving concrete solutions as this might subconsciously or consciously
narrow down model design for other researchers.

4.3.1 Coreferences

For reasons of redundancy avoidance and general brevity, recipes will often represent
certain terms or complex combinations by shorter pronouns or generic noun phrases.
Sentences in which these phenomena occur will always need contextual information in
order to understand them. Therefore, recipes can generally only be understood when
processed as a whole instead of a collection of separate sentences.

Under coreferential phenomena we categorize all occurrences of linguistic expressions
in which there is a one-to-one mapping possible to the same real-world entity even though
a different wording is used for it. The difficulty in the context of recipes is that many
cooking actions lead to physical or chemical changes of food or tools by combination,
separation or general alteration. This could lead to either the introduction of completely
new entities or semantic distinction being required between two referring expressions,
namely with one reference representing the original entity and the other representing
a transformed form of that same entity. Historical and ontological knowledge about
actions and their effects might thus be needed for correct understanding of a recipe. As a
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further complicating factor, such coreferences also do not limit themselves to expressions
occurring in a direct sequence of sentences since multiple other instructions might be
intertwined between them.

As an example we consider an excerpt from the ‘Afghan Biscuits’ recipe, which
is shown in Figure 4.4. In this single recipe multiple occurrences of the previously
mentioned challenges can already be found.

The first coreferential challenge comes in the form of the need for the recognition of
brands. The ingredient list contains a reference to ‘Kellogg’s’ while a later instruction
refers to the same entity with the expression ‘corn flakes’. To resolve such a reference,
ontological knowledge is needed about what type of food the brand Kellogg’s might refer
to.

A second challenge is present in the form of creamed ‘butter and sugar’ later be-
ing referred to as a new entity called ‘butter mixture’. This implies recollection and
knowledge are required of already created mixtures and their composition. This need
for implicit knowledge is further made clear by the later instruction for the creation
of ‘icing’, which is also referred to as ‘mixture’. Moreover, the composition of this new
‘icing’ entity is only made clear after the ‘icing’ entity has already been introduced. This
means both back and forward reference resolution might be needed.

Lastly, the combination of ingredients generates another new entity called ‘dough’ by
adding more ingredients to the aforementioned ‘butter mixture’. Such a ‘dough’ entity
can be expected to have different compositions in different recipes or potentially even
in the same recipe if even more ingredients get added to it later on. The rolling action
then divides this singular entity ‘dough’ into multiple balls, which is then consequently
referred to with the pronoun ‘them’. After baking, each ball of dough is transformed and
later referred to as a ‘cookie’. Moreover, between these two references the instructions
for icing preparation are inserted making the relatively easy strategy of searching for the
entity mentioned in the preceding sentence inadequate. A more global approach seems
needed that takes both sequential history and ontological knowledge into account.

4.3.2 Ellipses & Implications

Another phenomenon that frequently occurs in recipes in order to generate a concise list
of instructions are ellipses, in which missing words or steps are expected to be derivable
from linguistic context as well as common sense world knowledge.

Gaps created by missing words are called zero anaphora, which are generally easier
to detect than missing steps as the presence of zero anaphora are often made clear by
the absence of expected grammatical structures. However, it should be noted that easier
detection of the gaps does not imply that detecting what they refer to is easy as well.
For both types of ellipses linguistic and extralinguistic knowledge might be needed.

In addition to the implication of missing entities and steps, using contextual and
common sense cooking knowledge might also be required to correctly interpret certain
instructions even if the instructions themselves do not explicitly contain gaps in their
wording.
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< i n g r ed i e n t>
300 grams unsweetened Kellogg’s or something s im i l a r

</ i n g r ed i e n t>

. . .

< i n s t r u c t i o n>
Cream the butter and sugar un t i l l i g h t and f l u f f y .

</ i n s t r u c t i o n>
< i n s t r u c t i o n>

S i f t t oge the r the f l o u r and cocoa powder and mix in to butter mixture
with a wooden spoon .

</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Fold in corn flakes and do not worry i f they crumble .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Rol l or p r e s s 1 1/2 teaspoons grams of the dough i n to balls and f l a t t e n
them s l i g h t l y .

</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Place them about 5 cm apart on the baking shee t .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Bake in the oven f o r 10 to 15 minutes .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Remove from oven , and coo l on a wire rack .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Prepare the icing by combining the icing sugar, unsweetened cocoa powder, and water

in a bowl .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Mix we l l u n t i l mixture i s f r e e o f lumps and o f a creamy con s i s t ency
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Spoon a l i t t l e icing on each cookie .

</ i n s t r u c t i o n>

Figure 4.4: An excerpt taken from the ‘Afghan Biscuits’ recipe of our benchmark, demon-
strating coreferential challenges that might be present. Related coreferences that refer
to similar entities are highlighted in the same way.
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To give an overview of these challenges we will consider excerpts from two recipes
of our benchmark. The excerpts come from the ‘Afghan Biscuits’ and ‘Easy Banana
Bread’ recipes, which are shown in respectively Figures 4.5 and 4.6.

< i n g r ed i e n t>
200 grams unsalted butter, room temperature

</ i n g r ed i e n t>

. . .

< i n s t r u c t i o n>
Roll or press 1 1/2 teaspoons of the dough into balls and f l a t t e n them

s l i g h t l y .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Place them about 5 cm apart on the baking shee t .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Bake (the balls of dough) in the oven f o r 10 to 15 minutes .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Remove (them) from oven , and coo l (them) on a wire rack .
</ i n s t r u c t i o n>

Figure 4.5: An excerpt taken from the ‘Afghan Biscuits’ recipe of our benchmark, demon-
strating zero anaphora and implication challenges that might be present. Zero anaphora
are presented in italic, while other parts requiring inferential operations are underlined
or highlighted in bold.

The ingredient list from ‘Afghan Biscuits’ clearly demonstrates that implication
derivation skills might be needed for correct understanding of recipes. There is a declara-
tive statement mentioning ‘200 grams unsalted butter, room temperature’, but an agent
will need access to common sense knowledge and reasoning skills in order to derive what
is meant from a procedural standpoint. This short declarative statement actually im-
plies fetching unsalted butter, weighing it to obtain 200 grams and letting it warm up to
room temperature either by waiting or by actively heating it. Additionally, some com-
mon sense knowledge might be needed to derive what is meant by ‘room temperature’.

The list of instructions from ‘Afghan Biscuits’ also contains a less straightforward
example of an ambiguous statement that would be interpreted correctly by humans, while
being difficult for artificial agents. The recipe contains the imperative statement ‘Roll
or press 1 1/2 teaspoons of the dough into balls’, for which a literal interpretation would
be to use only one and a half teaspoons of the dough to make balls. Knowing it is the
penultimate instruction in the recipe and a lot of dough would remain unused, humans
would quite straightforwardly reason that this instruction actually implies balls of dough
should be made repeatedly until all dough has been used. Such subtle disambiguations
in meaning often require taking the instructional nature and context of recipes into
account.
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Furthermore, knowing that such separate balls of dough will often still be referred to
as a singular entity is also knowledge that is useful for resolving zero anaphora in the next
instructions. It is not explicitly mentioned what should be baked, removed and cooled
but contextually it can be inferred that these would be ‘the balls of dough’. Moreover,
common sense knowledge is also needed to know that ‘the baking sheet’ should be placed
in the oven in order to bake the ‘the balls of dough’ and not the balls directly. Such
inferences seem rather straightforward for humans, but could actually require a lot of
ontological knowledge and reasoning.

< i n g r ed i e n t>
2 eggs

</ i n g r ed i e n t>

. . .

< i n s t r u c t i o n>
(Crack the eggs.)

Cream toge the r butter , eggs and sugar un t i l smooth .

</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Add bananas and v an i l l a (to the creamed mixture) ; beat (the mixture) we l l .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

Mix in f l o u r (into the mixture) .
</ i n s t r u c t i o n>
< i n s t r u c t i o n>

(Transfer batter into a greased pan and spread it evenly.)
Bake (the batter) (in the oven) at 165°C fo r about 1 hour .

</ i n s t r u c t i o n>

Figure 4.6: An excerpt taken from the ‘Easy Banana Bread’ recipe of our benchmark,
demonstrating zero anaphora, missing steps and other implication challenges that might
be present. Zero anaphora are presented in italic, missing steps are presented in bold
italic and transformed entities that are focused on have been underlined.

More examples of zero anaphora and examples can be found in the ‘Easy Banana
Bread’ excerpt. The arguments of most verbs are elided in this recipe, because a reader
can imply them from the context and commonsense cooking knowledge. Important to
note here as well is that the elided arguments in this recipe actually all refer to newly
introduced entities that have not been explicitly mentioned before, which could increase
the difficulty of detecting the right reference to fill the gap.

The ‘Easy Banana Bread’ excerpt also demonstrates the presence of missing steps,
which are expected to be implied by the reader but would lead to recipe failure if skipped.
First, the very common occurrence of adding eggs is present, in which the recipe does
not specify that the gathered eggs should actually be cracked and the contents have to be
added instead of the eggs as a whole. This also demonstrates the importance of taking
state changes into account, since the same word ‘eggs’ is used to refer to transformed
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versions of a similar entity. Secondly, the recipe does not explicitly state that the created
batter should be spread over a pan before it can be put in the oven.

Additionally, this excerpt also exemplifies that a recipe does often not mention which
kitchen commodity should be used to perform a cooking operation. An agent should
have commonsense knowledge in order to know what can be used for creaming, beating,
mixing and also baking.

Finally, the common idiosyncrasy of dropped determiners in instructions is present
here as well. Even though no definite articles are used when specifying operations on
ingredients, the entities mentioned in the instructions should be linked correctly to the
ingredients from the ingredient list.

4.3.3 Other Challenges

Referential challenges are the most prominent difficulties that will be encountered during
recipe parsing, but there are many other challenging phenomena that can occur as
well. Since most of our recipes are user-generated, many slight variations and even
inconsistencies can be found sporadically. These can vary from accidental misspellings
and grammatical errors to using different writing styles which might confuse agents.
The instruction “Roll or press 1 1/2 teaspoons of the dough into balls and flatten them”
from the ‘Afghan Biscuits’ recipe and the instruction “Take generous tablespoons of
the dough and roll it into a small ball” from the ‘Almond Crescent Cookies’ recipe,
for example, both imply an action should be performed repeatedly but both also use a
different grammatical number while talking about the intermediate and resulting entities.
Another version of an ‘Almond Crescent Cookies’ recipe even makes the repetitive nature
of the instruction explicit by stating “Working with 1 tablespoon of dough at a time,
lightly roll and then shape it into a ball”.

In addition to dealing with differences in writing styles, certain disambiguations
related to choosing the right operations might be subtle but complex as well. This com-
plexity might even increase in the future when the types of recipes that our benchmark
supports grow in number. In the context of salads and baked goods for example, which
are both present in our benchmark, mixing lettuce and tomatoes should be seen as quite
a different operation when compared to mixing dough. Spreading butter on a pan or
spreading potatoes on a pan generally also requires different tools and execution, which
means they are not semantically the same.

Finally, as is common for user-generated content the recipes in our benchmark also
contain some declarative information which could be ignored but might actually be useful
to expand general cooking knowledge of a model. This declarative information could be
more subjective, e.g., “I find that the longer this dish marinates the tastier it is!”, to
objective hints for execution such as “it will be slightly crumbly”.
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Chapter 5

Conclusions & Future Work

The goal of this thesis is to strive towards finding an answer to the research question:
“How can we design a benchmark that can foster progress in the domain of natural
language understanding with a focus on the deep understanding of an everyday human
activity, in particular the execution of recipes written in natural language in a kitchen
environment?”. Therefore, this thesis starts with an elaborate background study to lay
the foundations needed for developing a high-quality recipe understanding benchmark.
This includes giving an overview of existing recipe parsing approaches and difficulties
they face. In this context, a strong focus is put on representations that are suited for
recipe execution with many of them being graph-based. Additionally, we formally define
what a benchmark is and delve deeper into its components and properties. During
this background study it has also been discovered that benchmarks have both many
proven benefits and many potential pitfalls. Succumbing to some of these pitfalls might
be the reason that existing benchmarks have failed to achieve widespread adoption in
the research community and performance on real-world recipe execution tasks is still
limited. Based on the aforementioned findings, we developed a new benchmark for
recipe understanding where each design choice is clearly motivated and explained. This
benchmark development is followed by a subsequent deeper analysis and general usage
guidelines to maximize transparency and encourage not only community adoption but
also further improvements.

Keeping all of this in mind, the remainder of this chapter is outlined as follows. In
section 5.1 we give a discussion and some concluding insights related to the efforts and
findings regarding the stated research question. Finally, section 5.2 reflects on questions
that are still left unanswered and potential future improvements. Moreover, it mentions
some related research that is already being performed which might benefit from the
research presented in this thesis.

5.1 Conclusions

Our preliminary research for the development of a new benchmark for recipe understand-
ing has made it clear that the use of benchmarks is a historically proven way to increase
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progress in a field of research. Nevertheless, existing benchmarks related to natural lan-
guage understanding in the context of recipe execution have not achieved widespread
adoption. Although multiple issues exist within them, one potential cause that analysis
has brought to light is the absence of a clear method for evaluating a model’s perfor-
mance on them. Therefore, evaluation methods have been a main point of focus in our
new benchmark. Furthermore, our preliminary research led to the discovery of some po-
tential pitfalls that are present in many recent artificial intelligence benchmarks. These
include overfitting, oversaturation, overpromotion of a specific type of model and lack
of transparency when it comes to benchmark design and applicability. Thus, avoiding
these mistakes has been a second point of focus. At the same time, good properties
that are present in existing benchmark have also been consistently taken into account.
Such properties relate to benchmark relevance, reproducibility, verifiability, fairness and
usability.

The design of our benchmark, which we named the MUHAI Recipe Execution Bench-
mark, clearly reflects the aforementioned points of focus. After deciding that our
benchmark would consist of the concrete task of parsing a number of salad and baking
recipes into a machine-readable and executable representation language, we developed
the MUHAI Cooking Language. This is a formal graph-based language in which pred-
icates correspond to executable primitive operations representing meaningful cooking-
related actions, with predicate arguments corresponding to cooking-related concepts such
as ingredients and tools. Its definition and design has been inspired by previous work in
the field of recipe understanding, in which implicit and explicit graphs have proven to be
useful as they can adequately capture relations, temporality and are both human- and
machine-readable. Moreover, such representations have already been successfully used
in robotic cooking experiments in the past, which proves their worth in the context of
recipe execution.

After designing the MUHAI Cooking Language, most effort has been put into the
design and development of evaluation tools because this was a shortcoming in existing
recipe understanding benchmarks. Previous benchmarks either did not mention any
metrics or used metrics that are not specific enough in the context of recipe under-
standing aimed at execution. Therefore, a new evaluation approach is considered that
is simulation-based. A symbolic simulator supporting automatic execution and evalu-
ation of parsed recipes is provided with our benchmark. This approach should ensure
better transferability to real-world utility later on, since the goal of our benchmark re-
quires recipe understanding that optimizes successful execution potential and not only
understanding as many sentences as possible in isolation. Even though both goals have
some overlap, the former requires more elaborate reasoning skills, memory and world
knowledge.

To ensure better transferability and relevance of evaluation scores, a combination of
multiple simulation-based metrics and a more traditional non-simulation-based metric
has been deemed necessary as well. The four metrics that are provided are Smatch
score, goal-condition success, dish approximation score and recipe execution time. The
Smatch score has been included because it has been specifically developed for use as a
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common metric for semantic structures and has known good adoption rates within our
target community. However, the combination of the three simulation-based metrics is
more specific to our goal as they can more closely gauge how close to successful recipe
execution we are. Goal-condition success measures how many goal-conditions we have
reached on our way to the final dish, which thus also estimates where execution goes
wrong. The dish approximation score estimates the similarity between the created main
dish and the gold standard dish, independent of how this dish was reached and whether
certain goal-conditions were traversed. This allows for more deviations during execution
as long as the final dish is correct. Lastly, from a practical standpoint, correct execution
is not enough for good applicability which means an execution efficiency measure is
needed. This led to the inclusion of recipe execution time as a metric.

In addition to providing usable and relevant evaluation tools, our benchmark needed
to avoid the mistakes of overfitting, oversaturation and overpromotion of specific models.
These points of focus are mainly visible through the composition of our dataset and the
absence of a leaderboard, which deviate from choices made in many modern benchmarks.
Modern benchmarks often provide large-scale sets of training data combined with leader-
boards, which promotes the use of resource-intensive deep learning methods and even
benchmark overfitting to achieve high rankings. In contrast, our benchmark is designed
without a leaderboard or training data but instead only provides some examples, test
data and ways to evaluate a model. This approach puts less emphasis on achieved scores
and more emphasis on allowing different types of models to survey the domain fully
and showcase the benefits of different approaches. To further accentuate the importance
of analysis over mere performance, in this thesis we also shed some light on challenges
present in many recipe texts such as various anaphora phenomena inherent to recipes.

At the same time, not providing training data does have the disadvantage of deliv-
ering less communal resources since benchmark users will have to put more resources
into curating training data themselves. Trade-offs will always be needed in benchmark
design, which is also the reason full transparency about design choices and benchmark
applicability is important. We avoided the last mistake of lacking transparency by being
as open as possible about every aspect from the design process. This includes mentioning
both advantages and disadvantages as well as providing detailed information about the
data collection process, the annotation process, the evaluation tools and the benchmark’s
composition and design in general.

In conclusion, this thesis offers an example of a benchmark that is specifically de-
signed to help advance the domain of natural language understanding for recipe execution
by autonomous agents. Whether the endeavor will be successful in the sense that such
long-term goals will actually be achieved can not yet be determined, but this thesis nev-
ertheless elucidates and illustrates development and analysis guidelines that are useful
for future benchmark design.
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5.2 Future Work

When it comes to future work related to this thesis, a first interesting choice would be
to do a follow-up study focusing on adoption. A benchmark has been proposed that
aims to garner community adoption and lead to domain progression, but the actual
success of such an endeavor requires more time to have passed before it can actually be
investigated. In addition, an extensive user survey could be performed that might bring
to light certain deficits which could lead to further developments. However, in short-
term research discovered deficits would probably mostly be related to only usability and
user experience issues.

Furthermore, some known deficits exist that have been kept due to trade-offs that
had to be made during development from a resource availability perspective. The trans-
parency about these less optimal aspects of our benchmark and the open source availabil-
ity hopefully leads to future improvements mitigating some of them. A first improvement
would involve extensions to the dataset, simulator and potentially even the representa-
tion language in terms of covered recipe categories. The recipes that are currently
supported consist of salads and baked goods which are sufficiently distinct to require a
good combination of different approaches, but the cooking domain is still much larger
than solely these types of dishes. Moreover, only English recipes are currently supported
but prior research has shown that subtle and less subtle differences exist between recipes
based on their language and culture. Broader support in that sense would be an inter-
esting extension as well, but this would probably require a more elaborate annotation
strategy to ensure both feasibility and quality of annotating.

Another interesting possible improvement would be the development of an even
stronger, more realistic physics-based simulator. Since the evaluation is mostly based
on simulations, a more advanced simulator should further enhance transferability of
obtained performance to the real world. The ideas, concepts and the developed repre-
sentation language of our benchmark could be reused with some modifications to be able
to make maximal use of such a new simulator. At the moment of writing, the University
of Bremen is actually actively performing research into the development of a physics-
based virtual reality simulator for the designed representation language in collaboration
with the Vrije Universiteit Brussel. Experiments with actual robotic execution could be
interesting as well to test out transferability of performance, but success in such a setting
would be dependent on many other components besides natural language understanding.

Pending a potential replacement of the simulator, another technical improvement
could be the development of extension mechanisms for the standalone executable that
do not require a Babel toolkit setup. The executable could be extended for example with
paths to special-purpose files that contain custom kitchen states. This would potentially
improve usability of the benchmark from an extensibility standpoint. However, since the
target audience is expected to generally be technically proficient the current extension
process via the Babel toolkit should not be problematic for our users either.

Finally, the main aim of any benchmark is actual use. So hopefully this benchmark
inspires novel approaches for recipe understanding and potentially even leads to enough
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domain progress that robotic recipe execution becomes viable. Furthermore, the de-
tailed approach towards benchmark design and analysis outlined in this thesis might
inspire other benchmark creators both inside and outside the field of natural language
understanding.

77



Bibliography

Abacha, A. B., & Zweigenbaum, P. (2011). Medical Entity Recognition: A Comparison
of Semantic and Statistical Methods. In K. B. Cohen, D. Demner-Fushman, S.
Ananiadou, J. Pestian, J. Tsujii, & B. Webber (Eds.), Proceedings of the BioNLP
2011 Workshop (pp. 56–64). Association for Computational Linguistics (ACL).

Allen, J. (1995). Natural Language Understanding (2nd ed.). Benjamin-Cummings Pub-
lishing Company.

Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.-A., Cojan, J., Cordier, A., De-
sprés, S., Jean-Daubias, S., Lieber, J., & Meilender, T. (2008). TAAABLE: Text
Mining, Ontology Engineering, and Hierarchical Classification for Textual Case-
Based Cooking. In M. Schaaf (Ed.), Workshop Proceedings of the 9th European
Conference on Case-Based Reasoning (pp. 219–228). Springer-Verlag GmbH.

Barbosa-Silva, A., Ott, S., Blagec, K., Brauner, J., & Samwald, M. (2022). Mapping
global dynamics of benchmark creation and saturation in artificial intelligence.
Nature Communications, 13, 1–11. https://doi.org/10.1038/s41467-022-34591-0

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., Tenenbaum, J.,
& Katz, B. (2019). ObjectNet: A large-scale bias-controlled dataset for pushing
the limits of object recognition models. In H. M. Wallach, H. Larochelle, A.
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Salvador, A., Drozdzal, M., Giró-i-Nieto, X., & Romero, A. (2019). Inverse Cooking:
Recipe Generation From Food Images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (pp. 10453–10462). Institute
of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/CVPR.
2019.01070

Salvador, A., Hynes, N., Aytar, Y., Marin, J., Ofli, F., Weber, I., & Torralba, A. (2017).
Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (pp. 3068–3076). IEEE Computer Society. https://doi.org/10.1109/
CVPR.2017.327

90

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1016/j.procs.2021.01.104
https://doi.org/10.1007/11861461_23
https://doi.org/10.1007/11861461_23
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3041021.3055137
https://doi.org/10.1109/CVPR.2019.01070
https://doi.org/10.1109/CVPR.2019.01070
https://doi.org/10.1109/CVPR.2017.327
https://doi.org/10.1109/CVPR.2017.327


Sanfeliu, A., & Fu, K.-S. (1983). A Distance Measure Between Attributed Relational
Graphs for Pattern Recognition. IEEE Transactions on Systems, Man, and Cy-
bernetics, 13 (3), 353–362. https://doi.org/10.1109/TSMC.1983.6313167

Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition. In W. Daelemans & M. Os-
borne (Eds.), Proceedings of the 7th Annual Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (pp. 142–147). Association for Computational Linguistics (ACL).

Sasada, T., Mori, S., Kawahara, T., & Yamakata, Y. (2015). Named Entity Recognizer
Trainable from Partially Annotated Data. In K. Hasida & A. Purwarianti (Eds.),
Proceedings of the 14th International Conference of the Pacific Association for
Computational Linguistics (pp. 148–160). Springer Singapore. https://doi.org/
10.1007/978-981-10-0515-2 11

Sato, T., Harashima, J., & Komachi, M. (2016). Japanese-English Machine Translation
of Recipe Texts. In T. Nakazawa, H. Mino, C. Ding, I. Goto, G. Neubig, S. Kuro-
hashi, I. H. Riza, & P. Bhattacharyya (Eds.), Proceedings of the 3rd Workshop
on Asian Translation (pp. 58–67). Association for Computational Linguistics
(ACL).

Schuster, M., & Paliwal, K. (1997). Bidirectional Recurrent Neural Networks. IEEE
Transactions on Signal Processing, 45 (11), 2673–2681. https://doi.org/10.1109/
78.650093

Seki, Y., & Ono, K. (2014). Discriminating Practical Recipes Based on Content Char-
acteristics in Popular Social Recipes. In A. J. Brush, A. Friday, J. A. Kientz,
J. Scott, & J. Song (Eds.), Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (pp. 487–496). Association
for Computing Machinery (ACM). https://doi.org/10.1145/2638728.2641326

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., & Sculley, D. (2017). No
Classification without Representation: Assessing Geodiversity Issues in Open
Data Sets for the Developing World. arXiv preprint arXiv:1711.08536. https :
//doi.org/10.48550/arXiv.1711.08536

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer,
L., & Fox, D. (2020). ALFRED: A Benchmark for Interpreting Grounded Instruc-
tions for Everyday Tasks. In Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 10737–10746). Institute of Elec-
trical & Electronics Engineers (IEEE). https://doi.org/10.1109/CVPR42600.
2020.01075

Simas, T., Ficek, M., Diaz-Guilera, A., Obrador, P., & Rodriguez, P. R. (2017). Food-
Bridging: A New Network Construction to Unveil the Principles of Cooking.
Frontiers in ICT, 4, 14. https://doi.org/10.3389/fict.2017.00014

Spranger, M., Pauw, S., Loetzsch, M., & Steels, L. (2012). Open-ended Procedural Se-
mantics. In L. Steels & M. Hild (Eds.), Language Grounding in Robots (pp. 153–
172). Springer US. https://doi.org/10.1007/978-1-4614-3064-3 8

91

https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1007/978-981-10-0515-2_11
https://doi.org/10.1007/978-981-10-0515-2_11
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1145/2638728.2641326
https://doi.org/10.48550/arXiv.1711.08536
https://doi.org/10.48550/arXiv.1711.08536
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.3389/fict.2017.00014
https://doi.org/10.1007/978-1-4614-3064-3_8


Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge Engineering: Principles
and Methods. Data & Knowledge Engineering, 25 (1–2), 161–197. https://doi.
org/10.1016/S0169-023X(97)00056-6

Suchanek, F. M., Kasneci, G., & Weikum, G. (2008). YAGO: A Large Ontology from
Wikipedia and WordNet. Journal of Web Semantics, 6 (3), 203–217. https://doi.
org/10.1016/j.websem.2008.06.001

Tasse, D., & Smith, N. A. (2008). SOUR CREAM: Toward Semantic Processing of
Recipes (tech. rep. No. CMU-LTI-08-005). Carnegie Mellon University. Pitts-
burgh, PA, USA.

Tenorth, M., & Beetz, M. (2009). KNOWROB: Knowledge Processing for Autonomous
Personal Robots. In Proceedings of the 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 4261–4266). Institute of Electrical &
Electronics Engineers (IEEE). https://doi.org/10.1109/IROS.2009.5354602

Tomori, S., Ninomiya, T., & Mori, S. (2016). Domain Specific Named Entity Recognition
Referring to the Real World by Deep Neural Networks. In K. Erk & N. A. Smith
(Eds.), Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics (pp. 236–242). Association for Computational Linguistics
(ACL). https://doi.org/10.18653/v1/P16-2039

Twomey, N., Fain, M., Ponikar, A., & Sarraf, N. (2020). Towards Multi-Language Recipe
Personalisation and Recommendation. In R. L. T. Santos, L. B. Marinho, E. M.
Daly, L. Chen, K. Falk, N. Koenigstein, & E. S. de Moura (Eds.), Proceedings of
the 14th ACM Conference on Recommender Systems (pp. 708–713). Association
for Computing Machinery (ACM). https://doi.org/10.1145/3383313.3418478

Van den Broeck, W. (2008). Constraint-based compositional semantics. In A. D. M.
Smith (Ed.), The Evolution of Language: Proceedings of the 7th International
Conference (EVOLANG7) (pp. 338–345). World Scientific Press. https://doi.
org/10.1142/9789812776129 0043

von Kistowski, J., Arnold, J. A., Huppler, K., Lange, K.-D., Henning, J. L., & Cao, P.
(2015). How to Build a Benchmark. In L. K. John, C. U. Smith, K. Sachs, & C. M.
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Appendices



Appendix A

Recipe-Related Benchmarks

In this appendix we will give an overview of all recipe-related benchmarks that we found
during our background research as a useful summary that can be used in further research.
Since this thesis focuses on research published in English, only benchmarks related to
such research have been included.
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Appendix B

MUHAI Cooking Language
Primitives

The primitives that are currently supported in MUHAI Cooking Language, their in-
tended meaning and simulator-specific implementation choices will be listed and de-
scribed alphabetically in the following paragraphs, with the number after / indicating
the number of arguments the predicate takes. Similar information can also be found in
the documentation accompanying our benchmark1.

bake/9

� Arguments:
?baked-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-bake, ?oven, ?time-
value, ?time-unit, ?temperature-value, ?temperature-unit

� Intended Meaning:
Obtain ?baked-thing by baking ?thing-to-bake in ?oven at the temperature spec-
ified by ?temperature-value and ?temperature-unit for the duration specified by
?time-value and ?time-unit. The arguments ?kitchen-state-in and ?kitchen-state-
out represent the contextual situation before and after execution of this predicate.

� Default Values:

– ?oven defaults to the closest unused oven in the kitchen

– ?temperature-value and ?temperature-unit default to the temperature of ?oven
(only possible in case ?oven is specified)

� Constant Arguments:

– ?time-value and ?temperature-value can be numerical values

– ?time-unit can be hour or minute

– ?temperature-unit can be degrees-celsius
1https://ehai.ai.vub.ac.be/recipe-execution-benchmark

B1

https://ehai.ai.vub.ac.be/recipe-execution-benchmark


boil/8

� Arguments:
?boiled-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-boil, ?stove, ?heating-
setting, ?time-value, ?time-unit

� Intended Meaning:
Obtain ?boiled-thing by boiling ?thing-to-boil on the ?stove at the heating set-
ting specified by ?heating-setting for the duration specified by ?time-value and
?time-unit. The arguments ?kitchen-state-in and ?kitchen-state-out represent the
contextual situation before and after execution of this predicate.

� Default Values:

– ?stove defaults to the closest unused stove in the kitchen

– ?heating-setting defaults to medium-heat

– ?time-value and ?time-unit default to 30 minutes

� Constant Arguments:

– ?heating-setting can be low-heat, medium-heat, medium-high-heat, high-heat

– ?time-value and ?temperature-value can be numerical values

– ?time-unit can be hour or minute

beat/5

� Arguments:
?beaten-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-beat, ?beating-tool

� Intended Meaning:
Obtain ?beaten-thing by beating ?thing-to-beat using ?beating-tool. Beating can
be seen as a more intense form of mixing which adds some air bubbles during the
combination process. This form of mixing also leads to a homogeneous result as
individual components are not kept intact. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual situation before and after execution of
this predicate.

� Default Values:

– ?beating-tool defaults to the closest unused whisk in the kitchen

bring-to-temperature/6

� Arguments:
?thing-at-desired-temperature, ?kitchen-state-out, ?kitchen-state-in,
?thing-to-bring-to-temperature, ?temperature-value, ?temperature-unit
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� Intended Meaning:
Obtain ?thing-at-desired-temperature at the temperature specified by ?temperature-
value and ?temperature-unit by waiting for ?thing-to-bring-to-temperature to cool
off or warm up by advancing towards the ambient temperature. The arguments
?kitchen-state-in and ?kitchen-state-out represent the contextual situation before
and after execution of this predicate.

� Default Values:

– ?temperature-value and ?temperature-unit default to the current room tem-
perature of the kitchen, which is around 18 °C.

� Constant Arguments:

– ?temperature-value can be a numerical value

– ?temperature-unit can be degrees-celsius

cover/5

� Arguments:
?covered-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-cover, ?cover

� Intended Meaning:
Obtain ?covered-thing by covering ?thing-to-cover with the specified ?cover. The
arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual situ-
ation before and after execution of this predicate.

� Default Values:

– ?cover defaults to an appropriate cover for the given ?thing-to-cover, i.e., a
bowl-lid for a bowl, a jar-lid for a jar or plastic-wrap for anything else.

cut/6

� Arguments:
?cut-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-cut, ?cutting-pattern,
?cutting-tool

� Intended Meaning:
Obtain ?cut-thing by using ?cutting-tool to cut ?thing-to-cut according to the
specified ?cutting-pattern. The arguments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and after execution of this predicate.

� Default Values:

– ?cutting-tool defaults to the closest unused knife in the kitchen

� Constant Arguments:
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– ?cutting-pattern can be chopped, finely-chopped, slices, fine-slices, squares,
two-cm-cubes, halved, shredded, minced, diced

crack/5

� Arguments:
?container-with-whole-eggs, ?kitchen-state-out, ?kitchen-state-in, ?eggs-to-crack,
?target-container-for-whole-eggs

� Intended Meaning:
Obtain ?container-with-whole-eggs by cracking ?eggs-to-crack, i.e., removing the
egg shell from ?eggs-to-crack, and dropping the egg contents in the container spec-
ified by ?target-container-for-whole-eggs. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual situation before and after execution
of this predicate.

� Default Values:

– ?target-container-for-whole-eggs defaults to the closest unused medium bowl
in the kitchen

dip/5

� Arguments:
?dipped-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-dip, ?dip

� Intended Meaning:
Obtain ?dipped-thing by dipping ?thing-to-dip into ?dip. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the contextual situation before and after
execution of this predicate.

drain/6

� Arguments:
?drained-thing, ?remaining-liquid, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-
drain, ?draining-tool

� Intended Meaning:
Obtain ?drained-thing by draining ?thing-to-drain using ?draining-tool leaving
the remaining liquid in ?remaining-liquid. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual situation before and after execution of
this predicate.

� Default Values:

– ?draining-tool defaults to the closest unused colander in the kitchen
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fetch/5

� Arguments:
?fetched-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-fetch, ?quantity-to-
fetch

� Intended Meaning:
Obtain ?fetched-thing by locating one or more ?thing-to-fetch objects in the kitchen
and bringing it to a common work area such as a kitchen countertop. The ex-
act number of objects to fetch is specified by ?quantity-to-fetch. The arguments
?kitchen-state-in and ?kitchen-state-out represent the contextual situation before
and after execution of this predicate.

� Constant Arguments:

– ?quantity-to-fetch can be a numerical value

– ?thing-to-fetch can be any transferable container or cooking utensil available
in the kitchen environment. These can currently all be found in the kitchen-
cabinet of the initial kitchen state shown in Figure C.1.

fetch-and-proportion/7

� Arguments:
?fetched-and-proportioned-ingredient, ?kitchen-state-out, ?kitchen-state-in,
?target-container-for-proportioned-ingredient, ?mach-and-proportion,
?proportion-value, ?proportion-unit

� Intended Meaning:
Obtain an amount of the food product ?fetched-and-proportioned-ingredient by
fetching an ?ingredient-to-fetch-and-proportion, taking a portion from it specified
by ?proportion-value and ?proportion-unit and placing this portion inside the con-
tainer specified by ?target-container-for-proportioned-ingredient. Ingredient left-
overs are returned to their original location. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual situation before and after execution of
this predicate.

� Constant Arguments:

– ?ingredient-to-fetch-and-proportion can be any ingredient that is mentioned
in the ingredient list of a supported recipe. Ingredients should be specified by
replacing all spaces in an ingredient name with the minus sign (-), e.g., ‘ground
black pepper’ would become ground-black-pepper. A list of all ingredients can
be found by combining the contents of the fridge, freezer and pantry of the
initial kitchen state shown in Figure C.1.

– ?proportion-value can be a numerical value

– ?proportion-unit can be piece, g, teaspoon, tablespoon, l or ml
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flatten/5

� Arguments:
?flattened-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-flatten,
?flattening-tool

� Intended Meaning:
Obtain ?flattened-thing by flattening ?thing-to-flatten using ?flattening-tool. The
arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual situ-
ation before and after execution of this predicate.

� Default Values:

– ?flattening-tool defaults to the closest unused rolling pin in the kitchen

flour/5

� Arguments:
?floured-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-flour, ?flour

� Intended Meaning:
Obtain ?floured-thing by flouring ?thing-to-flour with ?flour. The arguments
?kitchen-state-in and ?kitchen-state-out represent the contextual situation before
and after execution of this predicate.

� Default Values:

– ?flour defaults to 10 grams of all-purpose flour taken from the closest con-
tainer with all-purpose flour

fry/8

� Arguments:
?fried-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-fry, ?stove, ?heating-
setting, ?time-value, ?time-unit

� Intended Meaning:
Obtain ?fried-thing by frying ?thing-to-fry on the ?stove at the heating setting
specified by ?heating-setting for the duration specified by ?time-value and ?time-
unit. The arguments ?kitchen-state-in and ?kitchen-state-out represent the con-
textual situation before and after execution of this predicate.

� Default Values:

– ?stove defaults to the closest unused stove in the kitchen

– ?heating-setting defaults to medium-heat

– ?time-value and ?time-unit default to 30 minutes
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� Constant Arguments:

– ?heating-setting can be low-heat, medium-heat, medium-high-heat, high-heat

– ?time-value and ?temperature-value can be numerical values

– ?time-unit can be hour or minute

get-kitchen/1

� Arguments:
?initial-kitchen-state

� Intended Meaning:
Obtain the initial state of the kitchen ?initial-kitchen-state. This is expected to
provide access to an environment model of the kitchen to provide contextual in-
formation needed for executing a recipe.

� Default Values:

– ?initial-kitchen-state defaults to the initial kitchen state in which a recipe
will be executed. This argument is expected to be left to its default value in
which case this primitive functions as a ‘getter’.

grease/5

� Arguments:
?greased-thing, ?kitchen-state-out, ?kitchen-state-in,
?thing-to-grease, ?thing-to-grease, ?grease

� Intended Meaning:
Obtain ?greased-thing by greasing ?thing-to-grease with ?grease. The arguments
?kitchen-state-in and ?kitchen-state-out represent the contextual situation before
and after execution of this predicate.

� Default Values:

– ?grease defaults to 10 grams of butter taken from the closest container with
butter

grind/5

� Arguments:
?ground-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-grind, ?grinding-tool

� Intended Meaning:
Obtain ?ground-thing by grinding ?thing-to-grind using ?grinding-tool. The argu-
ments ?kitchen-state-in and ?kitchen-state-out represent the contextual situation
before and after execution of this predicate.
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� Default Values:

– ?grinding-tool defaults to the closest unused food-processor in the kitchen

leave-for-time/6

� Arguments:
?cooled-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-cool, ?time-value,
?time-unit

� Intended Meaning:
Obtain ?cooled-thing by waiting for the duration specified by ?time-value and
?time-unit to let ?thing-to-cool cool off towards the ambient temperature. The
arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual situ-
ation before and after execution of this predicate.

� Constant Arguments:

– ?time-value and ?temperature-value can be numerical values

– ?time-unit can be hour or minute

line/5

� Arguments:
?lined-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-line, ?lining

� Intended Meaning:
Obtain ?lined-thing by lining ?thing-to-line with ?lining, e.g., lining a baking tray
with some baking paper or lining muffin tins with paper baking cups. The argu-
ments ?kitchen-state-in and ?kitchen-state-out represent the contextual situation
before and after execution of this predicate.

� Default Values:

– ?lining defaults to the closest unused sheet of baking paper

� Constant Arguments:

– ?lining can be baking-paper or paper-baking-cups

– ?thing-to-line can be baking-tray, cookie-sheet, pan or muffin-tins

mash/5

� Arguments:
?mashed-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-mash,
?mashing-tool
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� Intended Meaning:
Obtain ?mashed-thing by mashing up ?thing-to-mash using ?mashing-tool. The
arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual situ-
ation before and after execution of this predicate.

� Default Values:

– ?mashing-tool defaults to the closest unused fork in the kitchen

melt/5

� Arguments:
?melted-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-melt, ?melting-tool

� Intended Meaning:
Obtain ?melted-thing by melting ?thing-to-melt using ?melting-tool. This melting
tool could be any kind of heating appliance in the kitchen, ranging from a pan on
the stove to a microwave. The arguments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and after execution of this predicate.

� Default Values:

– ?melting-tool defaults to the closest unused microwave in the kitchen

mingle/5

� Arguments:
?mingled-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-mingle, ?mingling-
tool

� Intended Meaning:
Obtain ?mingled-thing by mingling ?thing-to-mingle using ?mingling-tool. Min-
gling can be seen as a softer form of mixing in which the individual components
are still kept intact during the combination process. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the contextual situation before and after
execution of this predicate.

� Default Values:

– ?mingling-tool defaults to the closest unused wooden spoon in the kitchen

mix/5

� Arguments:
?mixed-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-mix, ?mixing-tool
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� Intended Meaning:
Obtain ?mixed-thing by mixing ?thing-to-mix using ?mixing-tool. Mixing can be
seen as a form of mixing that is intense enough to achieve a homogeneous mixture
without being so intense that air bubbles are added during the mixing process.
The arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual
situation before and after execution of this predicate.

� Default Values:

– ?mixing-tool defaults to the closest unused whisk in the kitchen

peel/6

� Arguments:
?peeled-thing, ?peel, ?kitchen-state-out ?kitchen-state-in, ?thing-to-peel, ?peeling-
tool

� Intended Meaning:
Obtain ?peeled-thing and its ?peel by peeling ?thing-to-peel using ?peeling-tool.
The arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual
situation before and after execution of this predicate.

� Default Values:

– ?peeling-tool defaults to the closest unused knife in the kitchen

portion-and-arrange/8

� Arguments:
?portions, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-portion, ?portion-size-
value, ?portion-size-unit, ?placement-pattern, ?container-for-portions

� Intended Meaning:
Obtain ?portions by portioning ?thing-to-portion into portions that each have a
size specified by ?portion-size-value and ?portion-size-unit. These portions are
placed onto the container ?container-for-portions following the ?placement-pattern.
The arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual
situation before and after execution of this predicate.

� Default Values:

– ?placement-pattern defaults to a pattern in which all portions are evenly
spread out over the container

– ?container-for-portions defaults to the countertop of the kitchen

– ?portion-size-value and ?portion-size-unit default to portion sizes that cause
an equal division over the available tins (only possible in case ?container-for-
portions are muffin tins)
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� Constant Arguments:

– ?placement-pattern can be side-to-side, evenly-spread, 5-cm-apart

preheat-oven/6

� Arguments:
?preheated-oven, ?kitchen-state-out, ?kitchen-state-in, ?oven, ?temperature-value,
?temperature-unit

� Intended Meaning:
Obtain ?preheated-oven by changing the settings of the ?oven to reach the tem-
perature specified by ?temperature-value and ?temperature-unit. The arguments
?kitchen-state-in and ?kitchen-state-out represent the contextual situation before
and after execution of this predicate.

� Default Values:

– ?oven defaults to the closest unused oven in the kitchen

� Constant Arguments:

– ?temperature-value can be a numerical value

– ?temperature-unit can be degrees-celsius

refrigerate/7

� Arguments:
?refrigerated-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-refrigerate, ?re-
frigerator, ?time-value, ?time-unit

� Intended Meaning:
Obtain ?refrigerated-thing by putting ?thing-to-refrigerate inside ?refrigerator for
the duration specified by ?time-value and ?time-unit. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the contextual situation before and after
execution of this predicate.

� Default Values:

– ?refrigerator defaults to the closest unused fridge in the kitchen

– ?time-value and ?time-unit default to one hour

� Constant Arguments:

– ?time-value can be a numerical value

– ?time-unit can be minute or hour
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seed/6

� Arguments:
?seeded-thing, ?seed, ?kitchen-state-out ?kitchen-state-in, ?thing-to-seed, ?seeded-
tool

� Intended Meaning:
Obtain ?seeded-thing and its ?seed by seeding ?thing-to-seed using ?seeding-tool.
The arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual
situation before and after execution of this predicate.

� Default Values:

– ?seeding-tool defaults to the closest unused knife in the kitchen

separate-eggs/8

� Arguments:
?egg-yolks, egg-whites, ?kitchen-state-out, ?kitchen-state-in, ?eggs, ?container-for-
yolks, ?container-for-whites, ?egg-separator

� Intended Meaning:
Obtain ?egg-yolks and egg-whites by using an ?egg-separator to separate separat-
ing the whole ?eggs into the ?container-for-yolks and ?container-for-whites re-
spectively. The arguments ?kitchen-state-in and ?kitchen-state-out represent the
contextual situation before and after execution of this predicate.

� Default Values:

– ?container-for-yolks defaults to the closest unused stove in the kitchen

– ?container-for-whites defaults to the closest unused medium bowl in the
kitchen (excluding the one found for ?container-for-yolks)

– ?egg-separator defaults the closest unused egg separator in the kitchen

shake/4

� Arguments:
?shaken-thing, ?kitchen-state-out ?kitchen-state-in, ?thing-to-shake

� Intended Meaning:
Obtain ?shaken-thing by shaking ?thing-to-shake to mix its contents, which are
generally liquids, until a homogeneous mixture is reached. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the contextual situation before and after
execution of this predicate.
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shape/5

� Arguments:
?shaped-thing, ?kitchen-state-out ?kitchen-state-in, ?thing-to-shape, ?shape

� Intended Meaning:
Obtain ?shaped-thing by shaping ?thing-to-shape into the shape specified by ?shape.
The arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual
situation before and after execution of this predicate.

� Constant Arguments:

– ?shape can be ball-shape or crescent-shape

sift/6

� Arguments:
?sifted-thing, ?kitchen-state-out ?kitchen-state-in, ?container-to-sift-into, ?thing-
to-sift, ?sift

� Intended Meaning:
Obtain ?sifted-thing by using ?sift to sift ?thing-to-sift into the container specified
by ?container-to-sift-into. The arguments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and after execution of this predicate.

� Default Values:

– ?container-to-sift-into defaults to the closest unused large bowl in the kitchen

– ?sift defaults to the closest unused sift in the kitchen

spread/6

� Arguments:
?thing-with-spread-on, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-spread-on,
?thing-to-spread, ?spreading-tool

� Intended Meaning:
Obtain ?thing-with-spread by spreading ?thing-to-spread on ?thing-to-spread-on
using spreading-tool. The arguments ?kitchen-state-in and ?kitchen-state-out rep-
resent the contextual situation before and after execution of this predicate.

� Default Values:

– ?spreading-tool defaults to the closest unused spatula in the kitchen

B13



sprinkle/5

� Arguments:
?thing-with-sprinkles-on, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-sprinkle-
on, ?sprinkles

� Intended Meaning:
Obtain ?thing-with-sprinkles-on by sprinkling ?sprinkles onto ?thing-to-sprinkle-
on. The arguments ?kitchen-state-in and ?kitchen-state-out represent the contex-
tual situation before and after execution of this predicate.

transfer-contents/8

� Arguments:
?container-with-transferred-contents, ?container-with-rest-of-contents,
?kitchen-state-out, ?kitchen-state-in, ?container-to-transfer-contents-to,
?container-with-contents-to-transfer, ?value-of-transfer-amount, ?unit-of-transfer-
amount

� Intended Meaning:
Obtain ?container-with-transferred-contents and ?container-with-rest-of-contents
by transferring an amount (specified by ?value-of-transfer-amount and ?unit-of-
transfer-amount) of the container ?container-with-contents-to-transfer ’s contents
into ?container-to-transfer-contents-to leaving the remaining contents in ?container-
with-rest-of-contents. The arguments ?kitchen-state-in and ?kitchen-state-out rep-
resent the contextual situation before and after execution of this predicate.

� Default Values:

– ?container-to-transfer-contents-to defaults to the closest unused large bowl in
the kitchen

– value-of-transfer-amount and unit-of-transfer-amount default to an amount
for which all contents are transferred, effectively emptying the original con-
tainer

� Constant Arguments:

– ?value-of-transfer-amount can be a numerical value

– ?unit-of-transfer-amount can be piece, g, teaspoon, tablespoon, ml or percent

transfer-items/6

� Arguments:
?transferred-items, ?kitchen-state-out, ?kitchen-state-in, ?items-to-transfer,
?placement-pattern, ?destination
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� Intended Meaning:
Obtain ?transferred-items by carefully transferring all items from ?items-to-transfer
to ?destination and placing them there according to the pattern specified by
?placement-pattern. The arguments ?kitchen-state-in and ?kitchen-state-out rep-
resent the contextual situation before and after execution of this predicate.

� Default Values:

– ?placement-pattern defaults to a pattern in which the available location is
filled up from side to side by creating rows of items one at a time in which
items are placed next to each other.

uncover/5

� Arguments:
?uncovered-thing, ?cover ?kitchen-state-out, ?kitchen-state-in, ?covered-thing

� Intended Meaning:
Obtain ?uncovered-thing and its prior ?cover by removing the cover from ?covered-
thing. The arguments ?kitchen-state-in and ?kitchen-state-out represent the con-
textual situation before and after execution of this predicate.

wash/4

� Arguments:
?washed-thing, ?kitchen-state-out, ?kitchen-state-in, ?thing-to-wash

� Intended Meaning:
Obtain ?washed-thing by rinsing off or washing ?thing-to-wash with water. The
arguments ?kitchen-state-in and ?kitchen-state-out represent the contextual situ-
ation before and after execution of this predicate.
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Appendix C

Initial Kitchen State

In this appendix we will describe the composition of the initial kitchen state from which
recipe execution will be started in the simulator for any of the available test recipes.
The initial kitchen state provides the initial context to start from and gets loaded in by
the get-kitchen operation, which should be present in every semantic network.

The contextual information provided by knowing the initial kitchen state could in-
fluence the actual interpretation of recipe texts, since it could alter what is possible
and thus what the semantic network should look like. Therefore, the composition of
the initial kitchen state should be taken into account during model development and
evaluation.

There is currently only one initial kitchen state made available in our benchmark
which is a very full kitchen containing all kitchen commodities, tools, appliances and
ingredients that could be needed for executing any of the recipes in our benchmark.
All ingredients are made available in medium bowls that could be located in the fridge,
freezer or pantry based on the ingredient’s storage requirements.

In Figure C.1 we give a detailed overview of the supported initial kitchen state,
with more information about initial kitchen states in general being available in the
documentation accompanying our benchmark1.

1https://ehai.ai.vub.ac.be/recipe-execution-benchmark
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kitchen (temperature: 18 °C)

oven

counter-top

fridge (temperature: 5 °C)

freezer (temperature: -18 °C)

stove microwave

almond (500 g)
almond-extract (100 g)
almond-flakes (250 g)
almond-flour (1 kg)
all-purpose-flour (1 kg)
baking-powder (250 g)
baking-soda (50 g)
bisquick-baking-mix (300 g)
brown-sugar (1 kg) 
caster-sugar (1 kg)
celery-seed (200 g)
cider-vinegar (500 ml)
coarse-salt (500 g)
cocoa-powder (500 g)
coconut-oil (500 ml)
corn-flakes (500 g)
devils-food-cake-mix (600 g)
dried-dill-weed (500 g)

baking-paper (3)
baking-tray (1)
bread-knife (3)
colander (3)
cookie-sheet (1)
cooking-pot (3)
egg-separator (3)
food-processor (1)
fork (9)
jar (3)

pantry

kitchen-cabinet

apple (6 pcs)
avocado (6 pcs)
banana (6 pcs)
black-bean (500 g)
black-olive (100 g)
butter (500 g)
broccoli (500 g)
carrot (12 pcs)
celery (6 pcs)
cherry-tomato (500 g)
cooked-bacon (500 g)
cooked-chicken (500 g)
corn (500 g)
cranberry (500 g)
cream-cheese (500 g)

jar-lid (3)
knife (9)
large-bowl (9)
large-bowl-lid (3)
medium-bowl (9)
medium-bowl-lid (3)
mixer (3)
muffin-tins (1)
paper-baking-cup (15)
plastic-wrap (1)

rolling-pin (3)
sift (3)
small-bowl (9)
small-bowl-lid (3)
spatula (3)
table-spoon (9)
tea-spoon (9)
whisk (9)
wire-rack (1)
wooden-spoon (9)

crushed-pineapple (500 g)
cucumber (10 pcs)
salted-butter (500 g)
egg (12 pcs)
egg-white (500 g)
feta-cheese (500 g)
fresh-basil (500 g)
fresh-cilantro (200 g)
fresh-oregano (50 g)
grated-horesradish (200 g)
grated-mozzarella (500 g)
green-cabbage (2 pcs)
green-chili-pepper (5 pcs)
hard-boiled-egg (12 pcs)
heavy-cream (500 g)

jalapeno (5 pcs)
lemon-juice (500 ml)
lime-juice (500 ml)
mango (5 pcs)
mixed-greens (500 g)
radish (10 pcs)
red-bell-pepper (10 pcs)
red-chili-pepper (5 pcs)
romaine-lettuce (2 pcs)
salted-butter (500 g)
shredded-coconut (500 g)
tomato (12 pcs)
water (1 l)
yellow-mustard (500 ml)

extra-virgin-olive-oil (500 ml)
garlic (5 pcs)
garlic-powder (500 g)
green-onion (10 pcs)
ground-allspice (50 g)
ground-black-pepper (500 g)
ground-cinnamon (50 g)
ground-cloves (50 g)
ground-cumin (500 g)
ground-ginger (50 g)
ground-nutmeg (50 g)
marshmallow (500 g)
molasses (900 g)
mustard-seed (200 g)
oats (500 g)
onion (10 pcs)
paprika-powder (300 g)
potato (12 pcs)

powdered-white-sugar (500 g)
red-onion (5 pcs)
red-pepper-flakes (50 g)
red-wine-vinegar (500 ml)
salt (500 g)
self-rising-flour (1 kg)
shallot (5 pcs)
sweet-potato (500 g)
tabasco (250 ml)
turmeric-powder (200 g)
vanilla (500 g)
vanilla-extract (100 g)
vegetable-oil (200 g)
walnut (500 g)
white-bread-slice (12 pcs)
white-sugar (1 kg)
white-vinegar (500 g)
whole-wheat-flour (1 kg)

frozen-corn (500 g)

Figure C.1: Visualization of the simulator’s initial kitchen state.
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Appendix D

Pseudo-Algorithms for the Dish
Approximation Score

To give a more formal explanation of the ‘dish unfolding’ and ‘dish approximation score’
algorithms, we will describe both of them in pseudocode. Section D.1 describes how to
compute the dish approximation score, while Section D.2 describes how to unfold a dish.
It should be noted that certain optimizations and edge cases have not been included
in this pseudocode for the sake of clarity. However, the complete code has been made
publicly available as part of the Babel package1.

D.1 Pseudo-Algorithm for Dish Approximation Score

DishApproximationScore(GoldStandardDish, PredictedOutputs)

parameters
GoldStandardDish - the main output food product of the gold standard solution
PredictedOutputs - the set of final output food products from the prediction

implementation:

MaxScore← 0
for every Output in PredictedOutputs do

ContainerScore← 0
if SameLocation(Output, GoldStandardDish) then

IncreaseScore(ContainerScore)
else

DecreaseScore(ContainerScore)
end if
for every Property in PropsOf(ContainerOf(GoldStandardDish)) do

if hasProperty(ContainerOf(Output), P roperty) then
IncreaseScore(ContainerScore)

1https://ehai.ai.vub.ac.be/recipe-execution-benchmark
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else
DecreaseScore(ContainerScore)

end if
end for

PredIngredients← Unfold(Contents(Output), None)
GSIngredients← Unfold(Contents(GoldStandardDish), None)
ContentsScores← ∅
for every GSIngredient in GSIngredients do

MaxBaseScore← 0
MaxBaseIngredient← ∅
for every PredIngredient in PredIngredients do

IngScore← PropertyOverlap(PredIngredient,GSIngredient)
SeqScore← HierarchyOverlap(PredIngredient,GSIngredient)
BaseScore← 0.60× IngScore+ 0.40× SeqScore
if BaseScore > MaxBaseScore then

MaxBaseScore← BaseScore
MaxBaseIngredient← PredIngredient

end if
end for
if MaxIngScore > 0 then

GSIngredients← GSIngredients \ {GSIngredient}
PredIngredients← PredIngredients \ {MaxBaseIngredient}

end if
ContentsScores← ContentsScores ∪ {MaxBaseScore}

end for
for Length(GSIngredients) + Length(PredIngredients) times do

ContentsScores← ContentsScores ∪ {0}
end for

CurrentScore← 0.02× ContainerScore+ 0.98×AV G(ContentsScores)
if CurrentScore > MaxScore then

MaxScore← CurrentScore
end if

end for
return MaxScore
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D.2 Pseudo-Algorithms for Dish Unfolding

Unfold(Dish)

parameters:
Dish - the dish whose contents should be unfolded into base ingredients

implementation:

Unfolded← ∅
for every Portion in Contents(Dish) do

Unfolded← Unfolded ∪ UnfoldIngredient(Portion, [])
end for

Merged← ∅
for every BaseIng1 in Unfolded do

for every BaseIng2 in Unfolded \ {BaseIng1} do
if Similar(BaseIng1, BaseIng2) then

Amount(BaseIng1)← Amount(BaseIng1) +Amount(BaseIng2)
Unfolded← Unfolded \ {BaseIng2}

end if
end for
Merged←Merged ∪ {BaseIng1}
Unfolded← Unfolded \ {BaseIng1}

end for

return Merged

UnfoldIngredient(Ingredients, Hierarchy)

parameters:
Ingredient - a single ingredient which might need additional unfolding (in case it is an
aggregate food product)
Hierarchy - an ordered list of aggregate food products in which Ingredient is used

implementation:

if Ingredient is an aggregate food product then
return UnfoldIngredient(Ingredient, [Ingredient] + Hierarchy)

else
return (Ingredient,Hierarchy)

end if
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Appendix E

Smatch Conversion Example

To give better insight into how a semantic network is converted into a conjunction of
logical propositions that can be used for Smatch score computations, we will give a brief
example of such a conversion for the following semantic network:

(get-kitchen ?ks-in)

(fetch-and-proportion ?proportioned-butter ?ks-out ?ks-in

?target-container butter 230 g)

As mentioned in section 3.4.3, there are three steps needed for conversion. These are

1. mapping each encountered primitive and variable to an instance;

2. creating an argument relation between each primitive name and its variable argu-
ments;

3. creating an argument attribute for the primitive name with a fixed value every
time a constant argument is encountered.

Step 1 There are two primitives and only four different variables, since ?ks-in is a
shared argument. This leads to the following conjunction of triples

instance(a0, get− kitchen) ∧
instance(a1, var) ∧
instance(a2, fetch− and− proportion) ∧
instance(a3, var) ∧
instance(a4, var) ∧
instance(a5, var)

In these triples, instances a1, a3, a4 and a5 respectively represent ?ks-in, ?proportioned-
butter, ?ks-out and ?target-container.
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Step 2 The primitive get-kitchen has one variable argument, namely ?ks-in and the
primitive fetch-and-proportion has four variable arguments namely ?proportioned-butter,
?ks-out, ?ks-in and ?target-container. Argument positions should be taken into account
as well, which we do by adding an index to each relation name. ARG2(a2, a1) for
example indicates a1 is the third argument in the primitive instance represented by a2.
Adding this type of argument relations leads to the following additional conjunction of
triples

ARG0(a0, a1) ∧
ARG0(a2, a3) ∧
ARG1(a2, a4) ∧
ARG2(a2, a1) ∧
ARG3(a2, a5)

Step 3 The primitive get-kitchen has no constant arguments, but the primitive fetch-
and-proportion has three of them which are butter, 230 and g. For the creation of
attributes argument positions are taken into account by adding an index to each attribute
name, similar to what was done in Step 2. ATTR4(a2, butter) for example indicates the
fifth argument of a2 has the fixed value butter. Adding this type of argument relations
leads to the following additional conjunction of triples

ATTR4(a2, butter) ∧
ATTR5(a2, 230) ∧
ATTR6(a2, g)
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Steps 1-3 If we combine all three steps together, we get the following conjunction of
logical propositions that is usable by Smatch

instance(a0, get− kitchen) ∧
instance(a1, var) ∧
instance(a2, fetch− and− proportion) ∧
instance(a3, var) ∧
instance(a4, var) ∧
instance(a5, var) ∧
ARG0(a0, a1) ∧
ARG0(a2, a3) ∧
ARG1(a2, a4) ∧
ARG2(a2, a1) ∧
ARG3(a2, a5) ∧
ATTR4(a2, butter) ∧
ATTR5(a2, 230) ∧
ATTR6(a2, g)

This example also shows that a simple semantic network composed of only two prim-
itives can already lead to a relatively long conjunction of 14 propositions. As we also
explained in section 3.4.3, these type of metrics can therefore also become computation-
ally costly for larger semantic networks.
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Appendix F

Examples of Result
Interpretations

In this appendix we will go through a number of example solutions aimed at providing
a better understanding of how to interpret evaluation results. Moreover, these examples
will further accentuate the importance of combining multiple metrics. The examples that
are used are different possible solutions for the recipe ‘Almond Crescent Cookies’, which
all have varying degrees of correctness. The actual solution files of these examples can
be found with additional comments in the documentation accompanying our benchmark
online1.

F.1 Perfect Solution

The ‘Almond Crescent Cookies’ recipe requires an implicit step of warming up butter and
fetching some unmentioned baking utensils. In a perfect solution tools are also reused as
much as possible for maximum efficiency. The obtained scores for such a perfect solution
are given in Table F.1.

Smatch Goal-Condition Success Dish Score Execution Time

1.00 1.00 1.00 2600

Table F.1: An overview of the evaluation results for a perfect solution for the ‘Almond
Crescent Cookies’ recipe.

Since all mandatory steps and no unneeded steps are included, the same implicit
graph is obtained as in the gold standard solution. This is the only case in which we
expect Smatch to detect full propositional overlap and a Smatch score of 1 is achieved. As
the exact same implicit graph is obtained, goal-condition success and dish approximation
score are also 1. The recipe execution time is the minimum that is possible and coincides
with the gold standard recipe execution time, which is 2600 time steps.

1https://ehai.ai.vub.ac.be/recipe-execution-benchmark
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F.2 Perfect Solution With Permuted Sequence

We should be able to randomly permute the sequence of primitive statements in a so-
lution without changing evaluation results. The obtained scores for such a solution are
given in Table F.2.

Smatch Goal-Condition Success Dish Score Execution Time

1.00 1.00 1.00 2600

Table F.2: An overview of the evaluation results for a perfect solution for the ‘Almond
Crescent Cookies’ recipe with the primitive statements themselves being randomly per-
muted in the solution file.

The sequence of the primitives in the file itself are unimportant, since all metrics
are based on the implicit execution graph that is formed through argument sharing.
This implicit graph is still the same as the implicit graph of the gold standard solution,
meaning all results are still optimal.

F.3 Solution With Switched Operations

In contrast to only permuting statements in the file, switching the actual execution order
of operations can have an influence on evaluation metrics. In Table F.3 we show the
scores obtained for a near-perfect solution in which some ingredients were added to the
bowl in a different order than specified by the steps in the recipe.

Smatch Goal-Condition Success Dish Score Execution Time

0.99 0.92 1.00 2600

Table F.3: An overview of the evaluation results for a near-perfect solution for the
‘Almond Crescent Cookies’ recipe in which some ingredients were added to the bowl in
a different order than specified by the steps in the recipe.

Since operational steps have been switched in the implicit graph, there is no complete
propositional overlap with the gold standard graph and thus the Smatch score is slightly
lowered. Additionally, goal-condition success is lowered as well. If two goal-conditions
are to have a bowl with ‘ingredient1’ and then to have a bowl with ‘ingredient1’ and ‘in-
gredient2’, then adding ‘ingredient2’ before ‘ingredient1’ leads to the first goal-condition
never being reached. Nevertheless, just adding ingredients in a bowl in a different order
before mixing them should not have an impact on the taste which is the reason the dish
approximation score is still maximal. Furthermore, adding ingredients in a different
order should not lead to a change in recipe execution time either which is the reason
recipe execution time is still the same as for the perfect solution.
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F.4 Inefficient Solution

The gold standard solution tries to be as efficient as possible which means it tries to
maximize reuse of tools. A solution that is less efficient will therefore differ in certain
evaluation scores compared to a more efficient solution. In Table F.4 we show the scores
obtained for a solution that contains all required steps, but does not always reuse cooking
tools when possible.

Smatch Goal-Condition Success Dish Score Execution Time

0.93 1.00 1.00 2660

Table F.4: An overview of the evaluation results for an inefficient solution for the ‘Al-
mond Crescent Cookies’ recipe that contains all required steps, but does not always
reuse cooking tools when possible.

Since tools are not reused, this means that strictly speaking some unnecessary steps
have been executed. Therefore, the implicit graph is different from the gold standard
solution which results in a lower Smatch score. Furthermore, fetching new tools also
increases the recipe execution time as tool reuse is more efficient.

Important to note here is that all gold standard goal-conditions are still reached and
the final dish is completely correct, which means the goal-condition success and the dish
approximation score are still maximal. We will still successfully execute the recipe, but it
will simply happen in an inefficient way. Therefore, from a simulation-based perspective
adding the recipe execution time is actually quite informative in this particular case.

F.5 Solution With a Minor Step Missing

If required steps are missing this should have an effect on evaluation results. In Table F.5
we show the scores obtained for a solution in which the cooking agent failed to deduce
the implicit step of letting the butter warm up before mixing it. This is a mistake in
recipe execution, but should generally be only a minor inconvenience for the later mixing
process.

Smatch Goal-Condition Success Dish Score Execution Time

0.94 0.38 0.99 1980

Table F.5: An overview of the evaluation results for an imperfect solution for the ‘Almond
Crescent Cookies’ recipe in which the cooking agent failed to deduce the implicit step of
letting the butter warm up before mixing it.

Since a mandatory step is missing, the implicit graph is different from the gold
standard solution which results in a lower Smatch score as there is no complete propo-
sitional overlap. Furthermore, warming up the butter was a required step and thus a
goal-condition that is missed.
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It is important to note here that this missed goal-condition occurs quite early in the
process leading to many subsequent goal-condition failures and a low goal-condition suc-
cess score overall. Every goal-condition that directly or indirectly requires this warmed
up butter will now fail. The evaluation of goal-conditions is very strict, with a goal-
condition either being completely fulfilled or being unsatisfied. This is a clear example
of why the addition of the dish approximation score is useful. Not warming up the butter
will not have a large influence on the taste of the final dish which is represented in a
high dish approximation score.

A second important note here is that the recipe execution time is actually lower than
the recipe execution time of a perfect solution. This is normal as we executed less steps
and therefore finished quicker. Therefore, recipe execution time should generally not be
interpreted in isolation as it is only informative in combination with the other metrics.

F.6 Partial Solution

The type and timing of steps that are missing will lead to a different effect on evaluation
results. In Table F.6 we show the scores obtained for a solution in which the cooking
agent failed to deduce fetching a baking tray and baking paper near the end of the recipe.
This led it to also skip the later steps since they required those cooking utensils.

Smatch Goal-Condition Success Dish Score Execution Time

0.84 0.77 0.82 1320

Table F.6: An overview of the evaluation results for an imperfect solution for the ‘Almond
Crescent Cookies’ recipe in which the cooking agent failed to deduce fetching a baking
tray and baking paper near the end of the recipe. This led it to also skip the later steps
since they required those cooking utensils.

Since some mandatory steps are missing, the implicit graph is different from the
gold standard solution which results in a lower Smatch score as there is no complete
propositional overlap. Furthermore, all goal-conditions after fetching the baking tray
are missing which leads to a significant lowering of goal-condition success as well. Since
the mistake happens fairly late in the process, there are less goal-conditions impacted by
the mistake compared to forgetting an operation early on, even if that early operation
would have been less significant. Forgetting to bake cookies at the end will have a lower
impact than forgetting to warm up butter at the start of cooking, since goal-condition
success considers all properties to be equally important.

The dish approximation score has been lowered as well. It should be noted, however,
that this lowering is mainly caused by the fact that an ingredient is missing due to the
absence of sugar sprinkling which would have happened after baking. When it comes
to taste, the impact of not baking the dough might be equally high in practice, but the
dish score mostly biases correctness of ingredient composition. This seems defensible as
it is easy for a human to still intervene and go from portioned dough to baked cookies,
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while human intervention would not allow turning incorrectly made baked cookies into
correctly made cookies.

Since the baking operation is the most time-consuming step in this recipe, recipe
execution time is much lower than the perfect solution. This example thus demonstrates
again that this metric is not very informative in absence of the other metrics.

F.7 Solution Using a Wrong Ingredient

Switching a base ingredient with another ingredient can lead to a significantly different
dish and thus has an effect on evaluation results. In Table F.7 we show the scores
obtained for a solution in which the cooking agent switched the base ingredient white
sugar with cocoa powder.

Smatch Goal-Condition Success Dish Score Execution Time

0.99 0.42 0.76 2600

Table F.7: An overview of the evaluation results for an imperfect solution for the ‘Almond
Crescent Cookies’ recipe in which the cooking agent switched the base ingredient white
sugar with cocoa powder.

Since a mandatory step has changed, the implicit graph is different from the gold
standard solution which results in a lower Smatch score as there is no complete propo-
sitional overlap. It is important to note here that changing a base ingredient does not
lead to a significant lowering of the Smatch score, although it can be expected to have
a significant impact on the final dish. The achieved Smatch score is even comparable
to a setting in which only a minor step is forgotten, such as letting butter warm up
before adding it. This further highlights the importance of including other metrics than
Smatch score.

Both goal-condition success and the dish approximation score have been heavily af-
fected by the ingredient mistake. The missed goal-conditions of fetching and adding
white sugar happened early on in the process, which led to many subsequent goal-
condition failures and thus a low goal-condition success score overall. Every goal-
condition directly or indirectly requiring the sugar ingredient has failed.

In addition, this particular mistake is also expected to have a big influence on the
taste of the final dish. Therefore, the dish approximation score is substantially lowered
as well, resulting in a score that is justifiably lower than a case in which a minor step
such as warming up butter is forgotten.

However, recipe execution time has remained optimal as both ingredients should take
equally long to be fetched and added to a bowl. This example thus demonstrates once
more that recipe execution time is not informative in isolation.
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F.8 Solution With an Additional Side Dish

Creating an additional side dish that is not included in the original recipe does not alter
the main dish, but will lead to an inefficient use of time if the main objective is preparing
the main dish. Therefore, it has an effect on evaluation results. In Table F.8 we show
the scores obtained for a solution in which an additional chocolate side dip is prepared
after the main dish is made.

Smatch Goal-Condition Success Dish Score Execution Time

0.90 1.00 1.00 2740

Table F.8: An overview of the evaluation results for an imperfect solution for the ‘Al-
mond Crescent Cookies’ recipe in which an additional unmentioned chocolate side dip
is prepared after the main dish is made.

Since a surplus of steps is present due to the side dish preparation, the implicit
graph is different from the gold standard solution which results in a lower Smatch score.
Additionally, recipe execution time has increased due to the extra steps that have been
executed.

However, both goal-condition success and the dish approximation score are still max-
imal. Even if more steps are executed than needed for the main dish, all required goal-
conditions have been achieved leading to perfect goal-condition success. Furthermore,
the main dish that we wanted to make is available in perfect condition at the end leading
to a perfect dish approximation score.

It is important to note here that the dish approximation score is not based on the
side dish, even though this is the last dish that was prepared during recipe execution.
The dish approximation score will always be computed on the dish that maximally ap-
proximates the gold standard dish irrespective of the timing of its availability. Therefore,
this is another case in which recipe execution time is useful to distinguish efficient from
inefficient time use as both other simulation-based metrics do not detect this.

F.9 Solution With an Extended Main Dish

Preparing a dip that is not included in the original recipe might already be an inefficient
use of time, but dipping the cookies from the main dish into this dip would also effectively
alter the main dish. Therefore, adding such an operation will have a bigger impact on
evaluation results. In Table F.9 we show the scores obtained for a solution in which an
additional chocolate dip is prepared and the main dish’s cookies are dipped into it at
the end.

Since a surplus of steps is present due to the dip preparation and dipping operation,
the implicit graph is different from the gold standard solution which results in a lower
Smatch score. Additionally, recipe execution time has increased due to the extra steps
that have been executed.
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Smatch Goal-Condition Success Dish Score Execution Time

0.92 1.00 0.87 2790

Table F.9: An overview of the evaluation results for an imperfect solution for the ‘Almond
Crescent Cookies’ recipe in which an additional chocolate dip is prepared and the main
dish’s cookies are dipped into it at the end.

Furthermore, the dish approximation score has been affected as well. Dipping the
main dish’s cookies in chocolate alters their composition. Even though the main dish
was available in perfect condition at some point during execution, the final dish that can
be served is not perfectly comparable with the dish we aimed to create which leads to a
lower dish approximation score.

However, it is important to note that goal-condition success is still maximal in this
case. More steps are executed than needed to reach a state in which the main dish is
available, but all required goal-conditions have still been achieved at some point which
leads to perfect goal-condition success. Goal-condition success is thus independent of
the fact that some goal-conditions might be undone at a later point by altering the
main dish, as long as the goal-conditions have been reached once. This example thus
demonstrates why combining multiple metrics can be important in order to obtain a
reliable view on performance.

F.10 Solution Without Actual Cooking

In case recipe parsing fails almost completely, evaluation results should adequately
demonstrate such a failure occurred. In Table F.10 we show the scores obtained for
a solution in which no actual cooking takes place as only the fetch operations were
recognized, namely fetching a baking tray and baking paper.

Smatch Goal-Condition Success Dish Score Execution Time

0.12 0.08 0.00 60

Table F.10: An overview of the evaluation results for an imperfect solution for the
‘Almond Crescent Cookies’ recipe in which no actual cooking takes place as only the
fetch operations were recognized, namely fetching a baking tray and baking paper.

Since many mandatory steps are missing, the implicit graph is very different from
the standard solution which results in a low Smatch score. However, it should be noted
that a score of 0.12 for an execution network that performs no actual cooking is still
relatively high. Moreover, since fetching a baking tray and baking paper were actual
goal-conditions, goal-condition success is also not 0 and even relatively high for a recipe
execution network that performs no actual cooking. These results again highlight the
importance of using a combination of metrics as they provide multiple perspectives on
the same performance. The dish approximation score for example is effectively 0 which
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clearly indicates no useful food product has been made.
Recipe execution time is very low as not many cooking operations have actually

taken place. This emphasizes once more that recipe execution time is only informative
in combination with the other metrics. Optimizing solely for recipe execution time could
lead to results in which no cooking takes place.
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